Autor: |
M L, Lamana, J C, Segovia, G, Guenechea, J A, Bueren |
Rok vydání: |
2001 |
Předmět: |
|
Zdroj: |
The journal of gene medicine. 3(1) |
ISSN: |
1099-498X |
Popis: |
The transduction of human peripheral blood T cells with retroviral vectors constitutes an attractive approach for the correction of a number of genetic diseases. In this study we have conducted a systematic analysis of the relevance of a large number of parameters currently considered to affect the transduction of, and transgene expression in, human T cells.Retroviral vectors encoding the human nerve growth factor receptor (NGFR) were used for transducing human T cells from normal volunteers. The proportion of T cells that expressed the marker transgene was determined by flow cytometry using anti-NGFR antibodies.Spinoculation and static fibronectin (FN)-assisted infections improved to a similar extent the transduction efficiency of PHA/IL-2 stimulated T cells, when compared with samples subjected to standard static infections. When immobilized anti-CD3 (anti-CD3i) or anti-CD3i/28i-stimulated T cells were considered, static infections in FN-coated plates were reproducibly more efficient than spinoculation infections performed on FN-uncoated plates. Under optimized manipulation conditions (three infection cycles of anti-CD3i/28i-stimulated T cells in FN-coated plates) the total number of NGFR+ T cells harvested after 7 days of incubation represented, on average, twice the total number of T cells seeded at Day 0, and up to 95% of the human T cells efficiently expressed the marker transgene. Similar results were obtained regardless of whether samples were manipulated in medium supplemented with fetal bovine serum or with heat-inactivated autologous serum.Our study offers new experimental conditions for the transduction of human T cells, with obvious implications for the development of gene therapy protocols. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|