Lenticular cytoprotection. Part 1: The role of hypoxia inducible factors-1α and -2α and vascular endothelial growth factor in lens epithelial cell survival in hypoxia
Autor: | Neelam, Sudha, Brooks, Morgan M., Cammarata, Patrick R. |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Models
Molecular Protein Synthesis Inhibitors Vascular Endothelial Growth Factor A Indazoles Axitinib Cell Survival MAP Kinase Signaling System Imidazoles Epithelial Cells Hypoxia-Inducible Factor 1 alpha Subunit Cell Hypoxia Cell Line Receptors Vascular Endothelial Growth Factor Proto-Oncogene Proteins c-bcl-2 Lens Crystalline Basic Helix-Loop-Helix Transcription Factors Humans Topotecan Research Article Signal Transduction |
Zdroj: | Molecular Vision |
ISSN: | 1090-0535 |
Popis: | Purpose The prosurvival signaling cascades that mediate the unique ability of human lens epithelial cells to survive in their naturally hypoxic environment are not well defined. Hypoxia induces the synthesis of the hypoxia inducible factor HIF-1α that in turn, plays a crucial role in modulating a downstream survival scheme, where vascular endothelial growth factor (VEGF) also plays a major role. To date, no published reports in the lens literature attest to the expression and functionality of HIF-2α and the role it might play in regulating VEGF expression. The aim of this study was to identify the functional expression of the hypoxia inducible factors HIF-1α and HIF-2α and establish their role in regulating VEGF expression. Furthermore, we demonstrate a link between sustained VEGF expression and the ability of the hypoxic human lens epithelial cell to thrive in low oxygen conditions and resist mitochondrial membrane permeability transition (also referred to as lenticular cytoprotection). Methods Hypoxia inducible factor translation inhibitors were used to demonstrate the role of HIF-1α and HIF-2α and the simultaneous expression of both hypoxic inducible factors to determine their role in regulating VEGF expression. Axitinib, which inhibits lenticular cell autophosphorylation of its VEGF receptor, was employed to demonstrate a role for the VEGF–VEGFR2 receptor complex in regulating Bcl-2 expression. Specific antisera and western blot analysis were used to detect the protein levels of HIF-1α and HIF-2α, as well as the proapoptotic protein, BAX and the prosurvival protein, Bcl-2. VEGF levels were analyzed with enzyme-linked immunosorbent assay (ELISA). The potentiometric dye, 5,5′,6,6′-tetrachloro1,1′,3,3′-tetraethyl-benzimidazolylcarbocyanine iodide, was used to determine the effect of the inhibitors on mitochondrial membrane permeability transition. Results Cultured human lens epithelial cells (HLE-B3) maintained under hypoxic condition (1% oxygen) displayed consistent accumulation of VEGF throughout the 72 h incubation period. Using hypoxia inducible factor translation inhibitors targeting HIF-1α or HIF-2α, the specific inhibition of each protein did not diminish VEGF synthesis. The combined inhibition of HIF-1α and HIF-2α expression, using a double hypoxia inducible factor translation inhibitor, markedly decreased the level of VEGF. The inhibition of VEGF synthesis was associated with a profound deficiency in the level of the prosurvival protein, Bcl-2. Axitinib also prevented the VEGF-mediated expression of Bcl-2. The loss of VEGF coupled with the decrease in intracellular Bcl-2 correlated with marked mitochondrial depolarization, an early predictor of cellular apoptosis. Conclusions Our data support a model in which the sustained synthesis of VEGF in human lens epithelial cells, maintained under hypoxic condition, is regulated by a compensatory inter-relationship between HIF-1α and HIF-2α. VEGF acts as a prosurvival factor in hypoxic lens epithelial cells by maintaining consistent expression of the prosurvival protein Bcl-2, which likely prevents the translocation of cytosolic BAX to the outer mitochondrial membrane, thus preventing the initiation of mitochondrial depolarization. |
Databáze: | OpenAIRE |
Externí odkaz: |