The effects of ethylene dimethane sulphonate (EDS) on rat Leydig cells: evidence to support a connective tissue origin of Leydig cells

Autor: A E, Jackson, P C, O'Leary, M M, Ayers, D M, de Kretser
Rok vydání: 1986
Předmět:
Zdroj: Biology of reproduction. 35(2)
ISSN: 0006-3363
Popis: Ethylene dimethane sulphonate (DS) administered to adult male rats in a single dose of 75 mg/kg body weight results in a rapid destruction of Leydig cells which, in turn, is associated with a marked decline in levels of serum testosterone. For 24-72 h after treatment with EDS (post-EDS) the Leydig cells undergo degenerative changes consisting of chromatin condensation and cytoplasmic vacuolation, and testicular macrophages progressively remove Leydig cells from the intertubular tissue by phagocytosis. This results in the total absence of Leydig cells on Days 7-14 and the absence of any detectable specific 125I-hCG binding to testis homogenates. Associated with the low levels of serum testosterone, levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in serum rise, LH to levels found in castrate rats. Morphometric and 125I-hCG binding studies indicate that a new generation of Leydig cells develop from Day 21 and reach control levels by Day 49. Morphologic observations suggest that the Leydig cells arise by differentiation from a pool of connective tissue cells that includes fibroblasts, lymphatic endothelial cells and pericytes. The new Leydig cells, which appear around Day 21 post-EDS, have the features of fetal Leydig cells. The latter appear to transform into Leydig cells typical of normal adult rats between 35-49 days post-EDS. The differentiation of new Leydig cells is associated with a reestablishment of normal levels of testosterone 21 days post-EDS. Serum LH and FSH return to normal at 28 days and 49 days respectively.
Databáze: OpenAIRE