Autor: |
Apurba, Maity, Utsav, Ghosh, Dipanjan, Giri, Devdeep, Mukherjee, Tapas Kumar, Maiti, Sanjib K, Patra |
Rok vydání: |
2019 |
Zdroj: |
Dalton transactions (Cambridge, England : 2003). 48(6) |
ISSN: |
1477-9234 |
Popis: |
A water-soluble dilithium salt BODIPY derivative (LiBDP) with appended dicarboxylate pseudo-crown ether [NO4] coordinating sites has been designed, synthesized and characterized successfully for the selective and sensitive recognition of Cd2+ in aqueous media. The chemosensor exhibits a remarkable increase in fluorescence intensity as well as a distinct color change upon the addition of Cd2+ over other environmentally and biologically relevant metal ions in H2O. The fluorometric response of LiBDP is attributed to the metal chelation-enhanced fluorescence (MCHEF) effect which has been confirmed by a strong association constant of 2.57 ± 1.06 × 105 M-1 and Job's plot, indicating 1 : 1 binding stoichiometry between LiBDP and Cd2+. Frontier molecular orbital analysis (obtained from DFT studies) also illustrates the turn-on fluorescence of the probe by blocking photoinduced electron transfer (PET) after coordination to Cd2+. The probe can detect Cd2+ in a competitive environment up to a submicromolar level in a biologically significant pH range. The sensor is proved to be reversible and reusable by the alternative addition of Cd2+ followed by S2-. The OFF/ON/OFF sensing behavior is utilized to construct an INHIBIT molecular logic gate based on the two inputs of Cd2+ and S2- and a fluorescence intensity at 512 nm as an output. The test paper experiment demonstrates the practical utility of LiBDP to monitor Cd2+ in an aqueous sample. Finally, the sensing probe was utilized to monitor Cd2+ in living cells. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|