[Diagnosis of endometrial cancer based on logistic regression and near infrared spectroscopy]

Autor: Jia-Jin, Zhang, Zhuo-Yong, Zhang, Yu-Hong, Xiang, Fan, Yang
Rok vydání: 2013
Předmět:
Zdroj: Guang pu xue yu guang pu fen xi = Guang pu. 33(2)
ISSN: 1000-0593
Popis: Endometrial carcinoma is one of the most common gynecologic cancers. The present paper reports a new application of Logistic regression to building model of endometrial cancer. Near infrared (NIR) spectra was introduced. In our study, the NIR spectra of 77 specimens were pretreated by principal component-linear discriminant analysis (PC-LDA) and support vector machine discriminant analysis (SVM-DA). Latin partition method for selecting training and test sets was used to determine the significant parameters for Logistic regression model. From the predicted results of logistic regression model, both the categories of samples and the trends of samples belonging to other class were clear and concordant with the clinical result. The proposed procedure proved to be suitable to being developed as a noninvasive diagnosis method for cancer tissue.
Databáze: OpenAIRE