Popis: |
Studying the events that occur during gamete fusion and sperm decondensation in the oocyte remains difficult because sperm-oocyte fusion and subsequent sperm decondensation represent a short part of the fertilization process, and their exact timing is difficult to determine. There is therefore a need for greater understanding of the events that occur during this period. The main purpose of this study was to examine the metabolic aspects of this time frame by characterizing glucose metabolism (glycolytic and pentose phosphate pathway [PPP] activities) during sperm fusion and decondensation into zona-free oocytes in mice. The metabolism of glucose through both glycolysis and the PPP was measured in ovulated MII oocytes, free of cumulus cells, and the levels of glucose metabolized were found to be low. Upon sperm entry, both glycolytic and PPP activity increased substantially. To determine whether this elevation in glucose metabolism was part of the activation process, the metabolism of parthenogenetically activated oocytes was measured, and no increase in metabolism was observed. The characterization of glucose metabolism during sperm fusion and decondensation into the oocyte, and comparison to parthenogenetically activated oocytes, showed that the fertilizing sperm is responsible for an increase in both glycolytic and PPP activity during fusion and/or decondensation. The significance of this observation during the fertilization process and for the developing embryo is as yet unclear and warrants further investigation. |