Activation of renal afferent pathways following furosemide treatment. II. Effect Of angiotensin blockade

Autor: G K, Fitch, M L, Weiss
Rok vydání: 2000
Předmět:
Zdroj: Brain research. 861(2)
ISSN: 0006-8993
Popis: The goal here and in the accompanying paper was to evaluate the two pathways used by the kidney to provide information to the central nervous system (CNS); e.g., the indirect, hormonal route via activation of the renin-angiotensin system and the direct pathway via activation of sympathetic afferents in the caudal thoracic spinal cord. Here, three experiments were designed to evaluate the actions of angiotensin elicited by subcutaneous injection of furosemide on neural activation of the CNS. The number of neurons immunocytochemically staining for the protein product (Fos) of the c-fos gene was used as an index of neuronal activation. In the first experiment, furosemide injection was preceded by treatment with a dose of Captopril, CAP, (an angiotensin-converting enzyme (ACE) inhibitor) that blocks the peripheral but not the central formation of angiotensin II. In the second experiment, furosemide injection was preceded by treatment with a higher dose of CAP; this dosage blocks the peripheral and central formation of angiotensin II. In the third experiment, furosemide injection was preceded by treatment with Losartan, a competitive receptor antagonist of type I angiotensin II receptors at a dose that would block central and peripheral angiotensin receptors. Control animals in each experiment received injections of vehicle (sterile isotonic saline) instead of furosemide. In each experiment, rats were sacrificed 1.75 h following furosemide or saline injection by transcardial perfusion and tissues were immunocytochemically processed for demonstration of Fos antigen. Rats receiving furosemide plus the low CAP dose showed more Fos-positive cells than control rats in the subfornical organ (SFO), organum vasculosum lamina terminalis (OVLT), supraoptic nucleus (SON), magnocellular region of the paraventricular nucleus, nucleus of the solitary tract (NTS), and caudal thoracic/rostral lumbar spinal cord dorsal horn. Rats receiving furosemide plus Losartan or furosemide plus the higher CAP dose did not show increased Fos immunoreactivity in any of the abovementioned structures relative to their respective control animals. We conclude that the receptor-mediated action of angiotensin II is in some way involved in the activation of the pathway that occurs in the SFO, OVLT, SON, and magnocellular region of the paraventricular nucleus (PVN) in response to furosemide treatment. It is possible that the furosemide-induced activation in the SON and PVN is not due to direct actions of angiotensin II on angiotensin receptors in those structures, but instead occurs synaptically as a result of inputs from the SFO and OVLT, which have themselves been activated directly by angiotensin II. In the accompanying paper, furosemide-induced activation in the NTS and caudal thoracic spinal cord is abolished by prior bilateral renal denervation, meaning that these neurons are likely part of a renal afferent pathway. Here, these structures did not elaborate Fos in animals injected with furosemide plus the high CAP dose or furosemide plus Losartan. Thus, the present results also suggest that the central blockade of the formation of angiotensin II or blockade of the actions of angiotensin II prevents in some way the activation of the renal afferent pathway mediated by the renal nerves (the direct pathway) in response to the actions of furosemide. Therefore, these results suggest that central angiotensin II is somehow involved in "priming" or increasing the sensitivity of the direct renal afferent pathway. Taken together with the accompanying paper, our results indicate that interruption of the direct pathway via renal denervation did not interfere with the elaboration of Fos in the lamina terminalis; in contrast, modification of the humoral renal afferent pathway can affect the sensitivity of the direct pathway. These results may have important implications for pathophysiological changes associated with fluid balance disorders including renal hypertension.
Databáze: OpenAIRE