Popis: |
The reaction of [Re(CO)3(THF)(μ-Br)]2 or [Re(CO)5X] (X = Cl, Br, I) with the diaryl-2-azabutadienes [(RS)2C[double bond, length as m-dash]C(H)-N[double bond, length as m-dash]CAr2] containing two thioether arms at the 4,4-position forms the luminescent S,N-chelate complexes fac-[(OC)3ReX{(RS)2C[double bond, length as m-dash]C(H)-N[double bond, length as m-dash]CAr2}] (1a-h). The halide abstraction by silver triflate converts [(OC)3ReCl{(PhS)2C[double bond, length as m-dash]C(H)-N[double bond, length as m-dash]CPh2}] (1c) to [(OC)3Re(OS([double bond, length as m-dash]O)2CF3){(PhS)2C[double bond, length as m-dash]C(H)-N[double bond, length as m-dash]CPh2}] (1j) bearing a covalently bound triflate ligand. The cyclic voltammograms reveal reversible S^N ligand-centred reduction and irreversible oxidation waves for all complexes. The crystal structures of nine octahedral complexes have been determined along with that of (NaphtylS)2C[double bond, length as m-dash]C(H)-N[double bond, length as m-dash]CPh2 (L6). A rich system of weak non-covalent intermolecular secondary interactions through CHX(Cl, Br)Re, CHO, COπ(Ph), CHπCO, CHO and CHS contacts has been evidenced. The photophysical properties have been investigated by steady-state and time-resolved absorption (fs transient absorption, fs-TAS) and emission (ns-TCSPC and ps-Streak camera) spectroscopy in 2-MeTHF solution at 298 and 77 K. The emission bands are composed of either singlet (450λmax535 nm) and/or triplet emissions (at 77 K only, λmax640 nm, or appearing as a tail at λ600 nm), which decay in a multiexponential manner for the fluorescence (short ps (i.e.IRF)τF1.9 ns at 298 and 77 K) and monoexponentially for the phosphorescence (4.0τP7.0 ns at 77 K). The fs-TAS data reveal the presence of 2 to 4 transient species decaying in four narrow time windows (generally 125-165 fs, 370-685 fs, 3-6 ps, 30-45 ps). The complexity of these kinetics was explained by studying the photophysical behaviour of ligand L6. Its behaviour is the same as the complexes thus indicating that the ligand dictates the kinetic traits of the Re-species, except for the triplet emission as L6 is not phosphorescent. The triplet lifetime (4.0τP7.0 ns) is considered very short but not unprecedented. Furthermore, the nature of the lowest energy excited states of these chelate compounds and L6 has been addressed using DFT and TDDFT calculations and been assigned to metal-to-ligand (MLCT) and/or intraligand charge-transfer (ILCT). |