Intracellular Ca2+ concentrations in cultured chicken photoreceptor cells: sustained elevation in depolarized cells and the role of dihydropyridine-sensitive Ca2+ channels

Autor: K, Uchida, P M, Iuvone
Rok vydání: 1999
Předmět:
Zdroj: Molecular vision. 5
ISSN: 1090-0535
Popis: Retinal photoreceptor cells are tonically depolarized in darkness. Ca2+ influx in darkness plays a critical role in the regulation of neurotransmitter release and melatonin synthesis in these sensory cells. The purpose of the present study was to examine the dynamic changes of intracellular Ca2+ concentrations ([Ca2+]in ) in response to a tonic depolarizing stimulus and to determine the role of dihydropyridine-sensitive calcium channels in the response.Photoreceptor cells were prepared from embryonic chick retina and cultured for 6-12 days. Cells were depolarized by exposure to 35 mM extracellular K+. [Ca2+]in of individual photoreceptor cell bodies/synaptic terminals was determined by ratiometric fura-2 image analysis.Chemical depolarization with 35 mM [K+]out greatly increased [Ca2+]in of inner segment/synaptic terminal regions of photoreceptors. The increase usually reached a plateau after the first few minutes of stimulation and was sustained for prolonged periods (2 h) in the presence of high K+. When the extracellular K+ concentration was reduced, the [Ca2+]in rapidly returned to the basal level. Substitution of 1 mM CoCl2 for CaCl2 in the superfusion medium rapidly and reversibly reduced the [Ca2+]in of depolarized photoreceptor cells. Antagonists of L-type Ca2+ channels, nitrendipine and nifedipine, inhibited the K+-evoked increase of [Ca2+]in. Bay K 8644, a dihydropyridine Ca2+ channel agonist, potentiated the increase of [Ca2+]in elicited by high K+. In some cells, Bay K 8644 alone increased [Ca2+]in under basal conditions.The increase of [Ca2+]in elicited by depolarization with 35 mM extracellular K+ is due to influx of calcium through the dihydropyridine-sensitive voltage-gated channels. Intracellular [Ca2+] remains elevated for extended periods of time during tonic depolarization. This sustained response requires continuous Ca2+ channel activity.
Databáze: OpenAIRE