Popis: |
Resistance to chemotherapy is the major cause of cancer treatment failure. Insight into the mechanism of action of agents that modulate multidrug resistance (MDR) is instrumental for the design of more effective treatment modalities. Here we show, using KB-V-1 MDR human epidermoid carcinoma cells and [3H]palmitic acid as metabolic tracer, that the MDR modulator SDZ PSC 833 (PSC 833) activates ceramide synthesis. In a short time course experiment, ceramide was generated as early as 15 min (40% increase) after the addition of PSC 833 (5.0 microM), and by 3 h, [3H]ceramide was3-fold that of control cells. A 24-h dose-response experiment showed that at 1.0 and 10 microM PSC 833, ceramide levels were 2.5- and 13.6-fold higher, respectively, than in untreated cells. Concomitant with the increase in cellular ceramide was a progressive decrease in cell survival, suggesting that ceramide elicited a cytotoxic response. Analysis of DNA in cells treated with PSC 833 showed oligonucleosomal DNA fragmentation, characteristic of apoptosis. The inclusion of fumonisin B1, a ceramide synthase inhibitor, blocked PSC 833-induced ceramide generation. Assessment of ceramide mass by TLC lipid charring confirmed that PSC 833 markedly enhanced ceramide synthesis, not only in KB-V-1 cells but also in wild-type KB-3-1 cells. The capacity of PSC 833 to reverse drug resistance was demonstrated with vinblastine. Whereas each agent at a concentration of 1.0 microM reduced cell survival by approximately 20%, when PSC 833 and vinblastine were coadministered, cell viability fell to zero. In parallel experiments measuring ceramide metabolism, it was shown that the PSC 833/vinblastine combination synergistically increased cellular ceramide levels. Vinblastine toxicity, also intensified by PSC 833 in wild-type KB-3-1 cells, was as well accompanied by enhanced ceramide formation. These data demonstrate that PSC 833 has mechanisms of action in addition to P-glycoprotein chemotherapy efflux pumping. |