Popis: |
The organs of laboratory mice used in radioimmunotherapy experiments are relatively small compared to the ranges of high-energy yttrium-90 (Y-90) beta particles. Current Medical Internal Radiation Dose (MIRD) dosimetry methods do not account for beta energy that escapes an organ. A dosimetry model was developed to provide more realistic dose estimates for organs in mice who received Y-90-labeled antibodies by accounting for physical and geometric factors, loss of beta dose due to small organ sizes, and cross-organ doses.The dimensions, masses, surface areas, and overlapping areas of different organs of 10 athymic nude mice, each weighing approximately 25 g, were measured to form a realistic geometric model. Major organs in this model include the liver, spleen, kidneys, lungs, heart, stomach, small intestine, large intestine, thyroid, pancreas, bone, marrow, and carcass. A subcutaneous tumor mass also was included in the model. By accounting for small organ absorbed fractions and cross-organ beta doses, the MIRD methodology was extended from humans to mice for beta dose calculations.Absorbed fractions of beta energy were calculated using the Berger's point kernels and the electron transport code EGS4. Except for the tumor and carcass, the self-organ absorbed fractions ranged from 15% to 20% in smaller organs (the marrow and thyroid) to 65%-70% in larger organs (the liver and small intestine). Cross-organ absorbed fractions also were calculated from estimates of the overlapping surface areas between organs.The mathematic mouse model presented here provides more realistic organ dosimetry of radiolabeled monoclonal antibodies in the nude mouse, which should, in turn, contribute to a better understanding of the correlation of biodistribution study results and organ-tumor toxicity information. |