Significant pathways of hepatic ethanol metabolism

Autor: R G, Thurman, W R, McKenna, H J, Brentzel, S, Hesse
Rok vydání: 1975
Předmět:
Zdroj: Federation proceedings. 34(11)
ISSN: 0014-9446
Popis: Rat liver microsomes oxidized ethanol two to three times faster than propanol when incubated with either an NADPH- or an H2O2-generating system. In addition, solubilized, purified microsomal subfractions were found to contain protein with an electrophoretic mobility identical to rat liver catalase on SDS polyacrylamide gels, suggesting that the separation of catalase from cytochrome P-450 and other microsomal components may not be feasible. These data support the postulate that catalase is responsible for NADPH-dependent microsomal ethanol oxidation. Direct read-out techniques for pyridine nucleotides, the catalase-H2O2 complex, and cytochrome P-450 were utilized to evaluate the specificity of inhibitors of alcohol dehydrogenase (4-methylpyrazole; 4 mM) and catalase (aminotriazole; 1.0 g/kg) qualitatively in perfused rat livers. 4-Methylpyrazole and aminotriazole are specific inhibitors for alcohol dehydrogenase and catalase, respectively, under these conditions. Neither inhibitor nor a combination of them altered the mixed function oxygen of p-nitroanisole to p-nitrophenol as observed by oxygen uptake and product formation. When ethanol utilization was measured over the concentration range 20-80 mM in perfused liver, a concentration dependence was observed. At low concentrations of ethanol, ethanol oxidation was almost totally abolished by 4-methylpyrazole; however, the contribution of 4-methylpyrazole-insensitive ethanol uptake increased as a function of ethanol concentration. At 80 mM ethanol, ethanol utilization was nearly 50% methylpyrazole-insensitive. This portion of ethanol oxidation, however, was abolished by aminotriazole. The data indicate that alcohol dehydrogenase and catalase-H2O2 are responsible for hepatic ethanol oxidation. At low ethanol concentrations (less than 20 mM), alcohol dehydrogenase is predominant; however, at higher ethanol concentrations (up to 80 mM), the contribution of catalase-H2O2 to overall ethanol utilization is significant. No evidence that the endoplasmic reticulum is involved in ethanol metabolism in the perfused liver emerged from these studies.
Databáze: OpenAIRE