Manganese lipoxygenase. Discovery of a bis-allylic hydroperoxide as product and intermediate in a lipoxygenase reaction

Autor: M, Hamberg, C, Su, E, Oliw
Rok vydání: 1998
Předmět:
Zdroj: The Journal of biological chemistry. 273(21)
ISSN: 0021-9258
Popis: Linoleic acid was incubated with manganese lipoxygenase (Mn-LO) from the fungus Gäumannomyces graminis. The product consisted of (13R)-hydroperoxy-(9Z,11E)-octadecadienoic acid ((13R)-HPOD) and a new hydroperoxide, (11S)-hydroperoxy-(9Z,12Z)-octadecadienoic acid ((11S)-HPOD). Incubation of (11R)-[2H]- and (11S)-[2H]linoleic acids with Mn-LO led to the formation of hydroperoxides that largely retained and lost, respectively, the deuterium label. Conversion of the (11S)-deuteriolinoleic acid was accompanied by a primary isotope effect, which manifested itself in a strongly reduced rate of formation of hydroperoxides and in a time-dependent accumulation of deuterium in the unconverted substrate. These experiments indicated that the initial step catalyzed by Mn-LO consisted of abstraction of the pro-S hydrogen of linoleic acid to produce a linoleoyl radical. (11S)-HPOD was converted into (13R)-HPOD upon incubation with Mn-LO. The mechanism of this enzyme-catalyzed hydroperoxide rearrangement was studied in experiments carried out with 18O2 gas or 18O2-labeled hydroperoxides. Incubation of [11-18O2](11S)-HPOD with Mn-LO led to the formation of (13R)-HPOD, which retained 39-44% of the 18O label, whereas (11S)-HPOD incubated with Mn-LO under 18O2 produced (13R)-HPOD, which had incorporated 57% of 18O. Furthermore, analysis of the isotope content of (11S)-HPOD remaining unconverted in such incubations demonstrated that [11-18O2](11S)-HPOD suffered a time-dependent loss of 18O when exposed to Mn-LO, whereas (11S)-HPOD incorporated 18O when incubated with Mn-LO under 18O2. On the basis of these experiments, it was proposed that the conversion of (11S)-HPOD into (13R)-HPOD occurred in a non-concerted way by deoxygenation into a linoleoyl radical. Subsequent reoxygenation of this intermediate by dioxygen attack at C-13 produced (13R)-HPOD, whereas attack at C-11 regenerated (11S)-HPOD. The hydroperoxide rearrangement occurred by oxygen rebound, although, as demonstrated by the 18O experiments, the oxygen molecule released from (11S)-HPOD exchanged with surrounding molecular oxygen prior to its reincorporation.
Databáze: OpenAIRE