Anti-nociceptive and Anti-inflammatory Activities of Asparacosin A Involve Selective Cyclooxygenase 2 and Inflammatory Cytokines Inhibition: An
Autor: | Nasiara, Karim, Inamullah, Khan, Waheed, Khan, Imran, Khan, Ajmal, Khan, Sobia Ahsan, Halim, Hizbullah, Khan, Javid, Hussain, Ahmed, Al-Harrasi |
---|---|
Rok vydání: | 2018 |
Předmět: |
Analgesics
Cyclooxygenase 2 Inhibitors Asparacosin A Immunology Anti-Inflammatory Agents docking studies Rats Molecular Docking Simulation Rats Sprague-Dawley Mice Cyclooxygenase 2 carrageenan-induced paw edema formalin test Spirostans xylene-induced ear edema Animals Cytokines acetic acid-induced writhing test Original Research |
Zdroj: | Frontiers in Immunology |
ISSN: | 1664-3224 |
Popis: | Triterpenes possess anti-inflammatory and anti-nociceptive effects. In this study anti-inflammatory activities of Asparacosin A were evaluated' using in-vitro cyclooxygenases 1 and 2 (COX-1/2) inhibition assays. Moreover, anti-nociceptive activities were assessed in-vivo by carrageenan-induced paw edema test, xylene-induced ear edema tests, and acetic acid-induced writhing and formalin tests. Additionally molecular docking was conducted to elucidate the binding mechanism of the compound and to correlate the in-vitro findings with the in-silico data. Oral administration of Asparacosin A at the doses of 10, 20, and 40 mg/kg induced significant anti-inflammatory effects (*p < 0.05, **p < 0.01, and ***p < 0.001) in a dose-dependent manner in both models. Asparacosin A also inhibited the human recombinant COX-2 enzyme and caused a dose-dependent decrease in the levels of TNF-α, IL-1β, and PGE2 in the carrageenan-induced paws. Moreover, Asparacosin A displayed significant anti-nociceptive effects (*p < 0.05, **p < 0.01, ***p < 0.001) at the doses of 10, 20, and 40 mg/kg in acetic-acid induced writhing test. However, in formalin test, Asparacosin A (10–40 mg/kg, p.o) produced anti-nociceptive effects only in the late phase, similar to the effect observed with the reference drug celecoxib (50 mg/kg, p.o). Molecular docking was carried out on both COX-1 and COX-2 structures which revealed that Asparacosin A targets allosteric binding site similar to the binding mode of the selective COX inhibitor. In conclusion, Asparacosin A exhibits anti-inflammatory and peripheral anti-nociceptive activities which are likely mediated via inhibition of COX-2 enzyme and inflammatory cytokines. Furthermore, Asparacosin A can serve as a model to obtain new and more selective potent anti-inflammatory and anti-nociceptive drugs. |
Databáze: | OpenAIRE |
Externí odkaz: |