Water Dynamics in Salt Solutions Studied with Ultrafast 2D IR Vibrational Echo Spectroscopy

Autor: Fayer, Michael D., Moilanen, David E., Wong, Daryl, Rosenfeld, Daniel E., Fenn, Emily E., Park, Sungnam
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Popis: Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species. Many of these species are charged. In the ocean, water interacts with dissolved salts. In biological systems, water interacts with dissolved salts as well as charged amino acids, the zwitterionic head groups of membranes, and other biological groups that carry charges. Water plays a central role in a vast number of chemical processes because of its dynamic hydrogen-bond network. A water molecule can form up to four hydrogen bonds in an approximately tetrahedral arrangement. These hydrogen bonds are continually being broken, and new bonds are being formed on a picosecond time scale. The ability of the hydrogen-bond network of water to rapidly reconfigure enables water to accommodate and facilitate chemical processes. Therefore, the influence of charged species on water hydrogen-bond dynamics is important. Recent advances in ultrafast coherent infrared spectroscopy have greatly expanded our understanding of water dynamics. Two-dimensional infrared (2D IR) vibrational echo spectroscopy is providing new observables that yield direct information on the fast dynamics of molecules in their ground electronic state under thermal equilibrium conditions. The 2D IR vibrational echoes are akin to 2D nuclear magnetic resonance (NMR) but operate on time scales that are many orders of magnitude shorter. In a 2D IR vibrational echo experiment (see the Conspectus figure), three IR pulses are tuned to the vibrational frequency of interest, which in this case is the frequency of the hydroxyl stretching mode of water. The first two pulses "label" the initial molecular structures by their vibrational frequencies. The system evolves between pulses two and three, and the third pulse stimulates the emission of the vibrational echo pulse, which is the signal. The vibrational echo pulse is heterodyne, detected by combining it with another pulse, the local oscillator. Heterodyne detection provides phase and amplitude information, which are both necessary to perform the two Fourier transforms that take the data from the time domain to a two-dimensional frequency domain spectrum. The time dependence of a series of 2D IR vibrational echo spectra provides direct information on system dynamics. Here, we use two types of 2D IR vibrational echo experiments to examine the influence that charged species have on water hydrogen-bond dynamics. Solutions of NaBr and NaBF(4) are studied. The NaBr solutions are studied as a function of the concentration using vibrational echo measurements of spectral diffusion and polarization-selective IR pump-probe measurements of orientational relaxation. Both types of measurements show the slowing of hydrogen-bond network structural evolution with an increasing salt concentration. NaBF(4) is studied using vibrational echo chemical-exchange spectroscopy. In these experiments, it is possible to directly observe the chemical exchange of water molecules switching their hydrogen-bond partners between BF(4)(-) and other water molecules. The results demonstrate that water interacting with ions has slower hydrogen-bond dynamics than pure water, but the slowing is a factor of 3 or 4 rather than orders of magnitude.
Databáze: OpenAIRE