Two distinctive O-methyltransferases catalyzing penultimate and terminal reactions of macrolide antibiotic (tylosin) biosynthesis. Substrate specificity, enzyme inhibition, and kinetic mechanism

Autor: A J, Kreuzman, J R, Turner, W K, Yeh
Rok vydání: 1988
Předmět:
Zdroj: The Journal of biological chemistry. 263(30)
ISSN: 0021-9258
Popis: S-Adenosyl-L-methionine:demethylmacrocin O-methyltransferase catalyzes the conversion of demethylmacrocin to macrocin as the penultimate step of tylosin biosynthesis in Streptomyces fradiae. The O-methyltransferase was purified to electrophoretic homogeneity by a conventional chromatographic procedure. The purified enzyme appears to be trimeric with a molecular weight of 122,000-126,000 and a subunit size of 42,000. Its isoelectric point was 6.0. The enzyme required Mg2+ for maximal activity and was catalytically optimal at pH 7.8-8.5 and 42 degrees C. The O-methyltransferase catalyzed conversion of demethylmacrocin to macrocin at a stoichiometric ratio of 1:1. The O-methyltransferase also mediated conversion of demethyllactenocin----lactenocin. The corresponding Vmax/Km ratios for the two analogous conversions varied only slightly. Both enzymic conversions were susceptible to an extensive and identical range of metabolic inhibitions. Steady-state kinetic studies for initial velocity, substrate analogue, and product inhibitions are consistent with Ordered Bi Bi as the reaction mechanism of demethylmacrocin O-methyltransferase. Except for an identical kinetic mechanism, demethylmacrocin O-methyltransferase can be readily differentiated from macrocin O-methyltransferase by its physical and catalytic properties as well as metabolic inhibitions.
Databáze: OpenAIRE