Autor: |
Iván, Huespe, Indalecio, Carboni Bisso, Nicolás A, Gemelli, Sergio A, Terrasa, Sabrina, Di Stefano, Valeria, Burgos, Jorge, Sinner, Mailen, Oubiña, Marina, Bezzati, Pablo, Delgado, Marcos, Las Heras, Marcelo R, Risk |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Medicina. 81(4) |
ISSN: |
1669-9106 |
Popis: |
Pandemics pose a major challenge for public health preparedness, requiring a coordinated international response and the development of solid containment plans. Early and accurate identification of high-risk patients in the course of the current COVID-19 pandemic is vital for planning and making proper use of available resources. The purpose of this study was to identify the key variables that account for worse outcomes to create a predictive model that could be used effectively for triage. Through literature review, 44 variables that could be linked to an unfavorable course of COVID-19 disease were obtained, including clinical, laboratory, and X-ray variables. These were used for a 2-round modified Delphi processing with 14 experts to select a final list of variables with the greatest predictive power for the construction of a scoring system, leading to the creation of a new scoring system: the COVID-19 Severity Index. The analysis of the area under the curve for the COVID-19 Severity Index was 0.94 to predict the need for ICU admission in the following 24 hours against 0.80 for NEWS-2. Additionally, the digital medical record of the Hospital Italiano de Buenos Aires was electronically set for an automatic calculation and constant update of the COVID-19 Severity Index. Specifically designed for the current COVID-19 pandemic, COVID-19 Severity Index could be used as a reliable tool for strategic planning, organization, and administration of resources by easily identifying hospitalized patients with a greater need of intensive care.La pandemia por COVID-19 planteó un desafío para el sistema salud, debido a la gran demanda de pacientes hospitalizados. La identificación temprana de pacientes hospitalizados con riesgo de evolución desfavorable es vital para asistir en forma oportuna y planificar la demanda de recursos. El propósito de este estudio fue identificar las variables predictivas de mala evolución en pacientes hospitalizados por COVID-19 y crear un modelo predictivo que pueda usarse como herramienta de triage. A través de una revisión narrativa, se obtuvieron 44 variables vinculadas a una evolución desfavorable de la enfermedad COVID-19, incluyendo variables clínicas, de laboratorio y radiográficas. Luego se utilizó un procesamiento por método Delphi modificado de 2 rondas para seleccionar una lista final de variables incluidas en el score llamado COVID-19 Severity Index. Luego se calculó el Área Bajo la Curva (AUC) del score para predecir el pase a terapia intensiva en las próximas 24 horas. El score presentó un AUC de 0,94 frente a 0,80 para NEWS-2. Finalmente se agregó el COVID-19 Severity Index a la historia clínica electrónica de un hospital universitario de alta complejidad. Se programó para que el mismo se actualice de manera automática, facilitando la planificación estratégica, organización y administración de recursos a través de la identificación temprana de pacientes hospitalizados con mayor riesgo de transferencia a la Unidad de Cuidados Intensivos. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|