Autor: |
A P, Gonçalves, P, Estrela, A, de Visser, E B, Lopes, I, Catarino, G, Bonfait, M, Godinho, M, Almeida, D, Gnida, D, Kaczorowski |
Rok vydání: |
2011 |
Zdroj: |
Journal of physics. Condensed matter : an Institute of Physics journal. 23(4) |
ISSN: |
0953-8984 |
Popis: |
Millimetre size UZn(12) single crystals were grown by the high temperature solution growth method using zinc as the solvent. Single-crystal x-ray diffraction data confirm that this compound crystallizes in the hexagonal high temperature form of SmZn(12) (S.G. P6/mmm) and points to a U(1.01(1))Zn(11.7(1)) stoichiometry for the crystals, with ∼ 4% of the U atoms being located at the 2c site due to the partial substitution of 4h Zn pairs. UZn(12) orders antiferromagnetically at T(N) = 5.0(2) K, and the magnetization and resistivity measurements suggest that the magnetic moments are confined within the a-b plane. The Sommerfeld coefficient, derived from the paramagnetic region by the standard method, is γ(p)≈200 mJ (mol K(2))( - 1), which definitely classifies UZn(12) as a moderate heavy-fermion system. The heavy-fermion character of UZn(12) is also manifested in the overall shape of temperature-dependent electrical resistivity that is dominated by a single-ion Kondo effect at high temperatures and coherent Kondo scattering at low temperatures. The paramagnetic magnetoresistivity isotherms can be fairly well superimposed onto each other using Schlottmann's scaling for the single-ion Kondo model, as expected for a Kondo system. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|