[Reactions in the organ of Corti to electrical stimulation : StED technology for detecting changes]

Autor: M N, Peter, G, Paasche, U, Reich, T, Lenarz, A, Warnecke
Jazyk: němčina
Rok vydání: 2019
Předmět:
Zdroj: HNO. 67(4)
ISSN: 1433-0458
Popis: Increasing numbers of cochlear implant patients have residual hearing. Despite surgical and pharmacological efforts to preserve residual hearing, a significant number of these patients suffer a late, unexplained loss of residual hearing. Surgical trauma can be excluded as the cause. To investigate this phenomenon and because cells in their native environment react differently to stimuli (such as electrical current) than isolated cells, whole-organ explants from cochleae may be a better model. For early detection of synaptic changes in the organ of Corti, a high-resolution microscopic technique such as stimulated emission depletion (StED) can be used. The aim of this study was establishment of a qualitative and quantitative technique to determinate changes in the organ of Corti and its synapses after electrical stimulation. Explanted organs of Corti from postnatal rats (P2-4) were cultured on a coverslip for 24 h and subsequently exposed to biphasic pulsed electrical stimulation (amplitude 0.44-2.0 mA, pulse width 400 μs, interpulse delay 120 μs, repetition 1 kHz) for another 24 h. For visualization, the cytoskeleton and the ribbon synapses were stained immunocytochemically. For an early detectable response to electrical stimulation, the number of synapses was quantified. Organs of Corti without electrical stimulation served as a reference. Initial research has shown that electrical stimulation can cause changes in ribbon synapses and that StED can detect these alterations. The herein established model could be of great importance for identification of molecular changes in the organ of Corti in response to electrical or other stimuli.
Databáze: OpenAIRE