Conventional protein kinase C isoforms differentially regulate ADP- and thrombin-evoked Ca²⁺ signalling in human platelets

Autor: Robert A, Lever, Azhar, Hussain, Benjamin B, Sun, Stewart O, Sage, Alan G S, Harper
Rok vydání: 2015
Předmět:
Zdroj: Cell calcium. 58(6)
ISSN: 1532-1991
Popis: Rises in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) are central in platelet activation, yet many aspects of the underlying mechanisms are poorly understood. Most studies examine how experimental manipulations affect agonist-evoked rises in [Ca(2+)]cyt, but these only monitor the net effect of manipulations on the processes controlling [Ca(2+)]cyt (Ca(2+) buffering, sequestration, release, entry and removal), and cannot resolve the source of the Ca(2+) or the transporters or channels affected. To investigate the effects of protein kinase C (PKC) on platelet Ca(2+) signalling, we here monitor Ca(2+) flux around the platelet by measuring net Ca(2+) fluxes to or from the extracellular space and the intracellular Ca(2+) stores, which act as the major sources and sinks for Ca(2+) influx into and efflux from the cytosol, as well as monitoring the cytosolic Na(+) concentration ([Na(+)]cyt), which influences platelet Ca(2+) fluxes via Na(+)/Ca(2+) exchange. The intracellular store Ca(2+) concentration ([Ca(2+)]st) was monitored using Fluo-5N, the extracellular Ca(2+) concentration ([Ca(2+)]ext) was monitored using Fluo-4 whilst [Ca(2+)]cyt and [Na(+)]cyt were monitored using Fura-2 and SFBI, respectively. PKC inhibition using Ro-31-8220 or bisindolylmaleimide I potentiated ADP- and thrombin-evoked rises in [Ca(2+)]cyt in the absence of extracellular Ca(2+). PKC inhibition potentiated ADP-evoked but reduced thrombin-evoked intracellular Ca(2+) release and Ca(2+) removal into the extracellular medium. SERCA inhibition using thapsigargin and 2,5-di(tert-butyl) l,4-benzohydroquinone abolished the effect of PKC inhibitors on ADP-evoked changes in [Ca(2+)]cyt but only reduced the effect on thrombin-evoked responses. Thrombin evokes substantial rises in [Na(+)]cyt which would be expected to reduce Ca(2+) removal via the Na(+)/Ca(2+) exchanger (NCX). Thrombin-evoked rises in [Na(+)]cyt were potentiated by PKC inhibition, an effect which was not due to altered changes in non-selective cation permeability of the plasma membrane as assessed by Mn(2+) quench of Fura-2 fluorescence. PKC inhibition was without effect on thrombin-evoked rises in [Ca(2+)]cyt following SERCA inhibition and either removal of extracellular Na(+) or inhibition of Na(+)/K(+)-ATPase activity by removal of extracellular K(+) or treatment with digoxin. These data suggest that PKC limits ADP-evoked rises in [Ca(2+)]cyt by acceleration of SERCA activity, whilst rises in [Ca(2+)]cyt evoked by the stronger platelet activator thrombin are limited by PKC through acceleration of both SERCA and Na(+)/K(+)-ATPase activity, with the latter limiting the effect of thrombin on rises in [Na(+)]cyt and so forward mode NCX activity. The use of selective PKC inhibitors indicated that conventional and not novel PKC isoforms are responsible for the inhibition of agonist-evoked Ca(2+) signalling.
Databáze: OpenAIRE