The role of fixation and bone quality on the mechanical stability of tibial knee components

Autor: R W, Lee, R G, Volz, D C, Sheridan
Rok vydání: 1991
Předmět:
Zdroj: Clinical orthopaedics and related research. (273)
ISSN: 0009-921X
Popis: Tibial component loosening remains one of the major causes of failure of cemented and noncemented total knee arthroplasties. In this study, the authors identified the role of implant design, method of fixation, and bone density as it related to implant stability. The physical properties of "good" and "bad" bone were simulated using a "good" and "bad" foam model of the proximal tibia, fabricated in the laboratory from DARO RF-100 foam. A generic tibial component permitting various fixation designs was implanted into "good" and "bad" variable density foam tibial models in both cemented and noncemented modes. The mechanical stability of the implants was determined using a Materials Testing Machine by the application of an eccentrically applied cyclic load. The micromotion (subsidence and lift-off) of the tibial implants was recorded using two Linear Variable Differential Transformers. Statistically significant differences in implant stability were recorded as a function of fixation method. The most rigid implant fixation was achieved using four peripherally placed, 6.5-mm cancellous screws. The addition of a central stem added stability only in the case of "poor" quality foam. The mechanical stability of noncemented implants related directly to the density of the foam. Implant stability was greatly enhanced in "poor" quality foam by the use of cement. The method of implant fixation and bone density are critical determinants to tibial implant stability.
Databáze: OpenAIRE