Autor: |
Ashok K, Parihar, Kali K, Hazra, Amrit, Lamichaney, Girish P, Dixit, Deepak, Singh, Anil K, Singh, Narendra P, Singh |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
International journal of biometeorology. 66(6) |
ISSN: |
1432-1254 |
Popis: |
Field pea is highly sensitive to climatic vagaries, particularly high-temperature stress. The crop often experiences terminal heat stress in tropical climates indicating the need for the development of heat-tolerant cultivars. Characterization and identification of stress-adaptive plant traits are pre-requisites for breeding stress-tolerant/adaptive cultivar(s). In the study, a panel of 150 diverse field pea genotypes was tested under three different temperature environments (i.e., normal sowing time or non-heat stress environment (NSTE), 15 days after normal sowing time or heat stress environment-I (LSHTE-I), and 30 days after normal sowing time or heat stress environment-II (LSHTE-II)) to verify the effect of high-temperature environment, genotype, and genotype × environment interaction on different plant traits and to elucidate their significance in heat stress adaptation/tolerance. The delayed sowing had exposed field pea crops to high temperatures during flowering stage by + 3.5 °C and + 8.1 °C in the LSHTE-I and LSHTE-II, respectively. Likewise, the maximum ambient temperature during the grain-filling period was + 3.3 °C and + 6.1 °C higher in the LSHTE-I and LSHTE-II over the NSTE. The grain yield loss with heat stress was 25.8 ± 2.2% in LSHTE-I, and 59.3 ± 1.5% in LSHTE-II compared to the NSTE. Exposure of crops to a high-temperature environment during the flowering stage had a higher impact on grain yield than the heat stress at the grain filling period. Results suggested that the reduced sink capacity (pod set (pod plant |
Databáze: |
OpenAIRE |
Externí odkaz: |
|