Popis: |
Methyl acetyl phosphate specifically acetylates valine-1, lysine-82, and lysine-144 in the 2,3-diphosphoglycerate binding cleft of hemoglobin S, thereby inhibiting its gelation (greater than 32 gm/dl) at pH 7.4. To extend these findings, the effect of methyl acetyl phosphate on the density of sickle cells has been evaluated by phthalate ester gradient centrifugation and by Larex-Percoll density centrifugation. After treatment with methyl acetyl phosphate (40% modification of the intracellular hemoglobin S), oxygenated sickle erythrocytes had a lowered density profile, as measured in a phthalate ester gradient. Thus 83% of untreated oxygenated sickle cells had densities greater than 1.098 gm/ml, whereas after treatment with methyl acetyl phosphate, 52% of the cells were in this density range. Under anaerobic conditions, methyl acetyl phosphate was even more effective in lowering cell density. For example, 50% of untreated deoxygenated cells had densities greater than 1.098 gm/ml, but none of the cells treated with methyl acetyl phosphate were this dense. For studies with Larex-Percoll density gradients, sickle erythrocytes were first separated into two fractions (densities greater than and less than 1.1 gm/ml) by Percoll-Hypaque centrifugation. The amount of oxygenated sickle cells exhibiting densities greater than 1.074 gm/ml decreased by about 32% on treatment with methyl acetyl phosphate. For deoxygenated sickle cells, treatment with methyl acetyl phosphate resulted in an average decrease of approximately 24% in the number of cells with densities greater than 1.074 gm/ml.(ABSTRACT TRUNCATED AT 250 WORDS) |