[An approach the quantitative determination of the area of glycoprotein spikes at the surface of enveloped viruses]

Autor: A L, Ksenofontov, G A, Badun, N V, Fedorova, L V, Kordiukova
Rok vydání: 2009
Předmět:
Zdroj: Molekuliarnaia biologiia. 42(6)
ISSN: 0026-8984
Popis: The density of distribution of glycoproteins on virion surface seriously influences the virus infectivity and pathogenicity. In the present work a method of quantitative determination of the area occupied by the surface glycoprotein spikes is proposed for influenza virus (strain A/PR/8/34) based on data of tritium bombardment and dynamic light scattering (DLS). The method of DLS was used for measuring the diameter of the intact virions and the subviral particles (influenza virions lacking glycoprotein spikes after bromelain digestion). The intact virions and the subviral particles were bombarded by the hot tritium atom flux followed by the analysis of the specific radioactivity of the matrix M1 protein. It was shown that the tritium label was incorporated into the amino acid residues of a thin exposed protein layer and partially penetrated through the lipid bilayer of the viral envelope. As a result, the matrix M1 protein which is located under the lipid bilayer became labeled. The tritium label distribution among different amino acid residues was the same for the M1 protein isolated from the subviral particles and the one isolated from the intact virions. This testifies that the M1 protein spatial structure remains unchanged during proteolysis of the glycoprotein spikes. The difference between the specific radioactivity of the M1 protein isolated from the intact virions and that of the M1 protein isolated from the subviral particles allowed us to calculate the portion of the viral surface which is free of the glycoprotein spikes. If approximate the influenza virion as as here the area occupied by the surface glycoproteins could be calculated. It appeared to be equal to approximately 1.4 yen 10 nm that is about 40% of the total viral surface. This is consistent with the cryoelectron tomography data published for the influenza virus (strain A/X-31). The developed approach could be applied for other enveloped high pathogenic viruses such as HIV and Ebola.
Databáze: OpenAIRE