Imaging of individual biopolymers and supramolecular assemblies using noncontact atomic force microscopy

Autor: T M, McIntire, D A, Brant
Rok vydání: 1997
Předmět:
Zdroj: Biopolymers. 42(2)
ISSN: 0006-3525
Popis: A variety of biopolymers is imaged using noncontact atomic force microscopy. Samples are prepared by aerosol spray deposition of aqueous solutions on freshly cleaved mica followed by air drying. The distributions of contour lengths and chain or fibril thicknesses normal to the mica substrate can be measured for individual polymer molecules or molecular assemblies. In many cases it is possible to conclude that the structures imaged and quantitatively analyzed are representative of those present in solution and not artifacts of the deposition/dessication process. Imaging of linear and cyclic triple helices of the polysaccharide scleroglucan is demonstrated. Measurements of the triple helix thickness normal to the mica surface are analyzed, and successful measurements of the molecular weight distribution and mean molar mass are described. It is demonstrated that the extent of chain association in the polysaccharide xanthan can be modulated by the addition of low molecular weight salts. The contour length and chain thickness distributions in a xanthan fraction are presented. Increases in the extent of chain association with increasing polymer concentration are documented for the gelling polysaccharide gellan, and the formation of stiff fibrillar gellan aggregates in the presence of added low molecular salt is demonstrated. Images are presented of the polysaccharide kappa-carrageenan in its disordered, and presumably single-stranded, state. Biopolymers other than polysaccharides can be imaged by the same technique; this is demonstrated with the fibrous protein collagen. In general it is shown that aerosol spray deposition of biopolymer samples can be used in conjunction with noncontact atomic force microscopy to provide a fast, reliable, and reproducible method for assessing the size and shape distributions of individual biological macromolecules and macromolecular assemblies in solution with a minimum of time and effort devoted to sample preparation.
Databáze: OpenAIRE