Pathophysiology of Acute Illness and Injury

Autor: Arlati, Sergio
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Operative Techniques and Recent Advances in Acute Care and Emergency Surgery
Popis: The pathophysiology of acute illness and injury recognizes three main effectors: infection, trauma, and ischemia-reperfusion injury. Each of them can act by itself or in combination with the other two in developing a systemic inflammatory reaction syndrome (SIRS) that is a generalized reaction to the morbid event. The time course of SIRS is variable and influenced by the number and severity of subsequent insults (e.g., reparative surgery, acquired hospital infections). It occurs simultaneously with a complex of counter-regulatory mechanisms (compensatory anti-inflammatory response syndrome, CARS) that limit the aggressive effects of SIRS. In adjunct, a progressive dysfunction of the acquired (lymphocytes) immune system develops with increased risk for immunoparalysis and associated infectious complications. Both humoral and cellular effectors participate to the development of SIRS and CARS. The most important humoral mediators are pro-inflammatory (IL-1β, IL-6, IL-8, IL-12) and anti-inflammatory (IL-4, IL-10) cytokines and chemokines, complement, leukotrienes, and PAF. Effector cells include neutrophils, monocytes, macrophages, lymphocytes, and endothelial cells. The endothelium is a key factor for production of remote organ damage as it exerts potent chemo-attracting effects on inflammatory cells, allows for leukocyte trafficking into tissues and organs, and promotes further inflammation by cytokines release. Moreover, the loss of vasoregulatory properties and the increased permeability contribute to the development of hypotension and tissue edema. Finally, the disseminated activation of the coagulation cascade causes the widespread deposition of microthrombi with resulting maldistribution of capillary blood flow and ultimately hypoxic cellular damage. This mechanism together with increased vascular permeability and vasodilation is responsible for the development of the multiple organ dysfunction syndrome (MODS).
Databáze: OpenAIRE