Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method

Autor: Polat, Alper, Kaya, Yusuf
Přispěvatelé: Kaya, Yusuf
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: In this study, the problem of discontinuous contact in two functionally graded (FG) layers resting on a rigid plane and loaded by two rigid blocks is solved by the finite element method (FEM). Separate analyzes are made for the cases where the top surfaces of the problem layers are metal, the bottom surfaces are ceramic and the top surfaces are ceramic and the bottom surfaces are metal. For the problem, it is accepted that all surfaces are frictionless. A two-dimensional FEM analysis of the problem is made by using a special macro added to the ANSYS package program The solution of this study, which has no analytical solution in the literature, is given with FEM. Analyzes are made by loading different Q and P loads on the blocks. The normal stress (sigma y) distributions at the interfaces of FG layers and between the substrate and the rigid plane interface are obtained. In addition, the starting and ending points of the separations between these surfaces are determined. The normal stresses (sigma x, sigma y) and shear stresses (tau xy) at the point of separation are obtained along the depth. The results obtained are shown in graphics and tables. With this method, effective results are obtained in a very short time. In addition, analytically complex and long problems can be solved with this method. WOS:000792148200004 Q1
Databáze: OpenAIRE