Popis: |
Tam olarak çözülmemiş bir problem olan deprem tahmin problemini yapay nöron ağîanna uyguladık. Manyitüt ve iki deprem arasındaki zamandan oluşan verilerin bir zaman serisini meydana getirdikleri ve bu serinin deprem sırası hakkında tüm gerekli bilgiyi içerdiğim kabul ederek, daha önce çeşitli zaman serilerini tahmin etmede ve modellemede kullanılan bazı nöron ağlarını çalıştırdık. Tezde deprem tahmin etme amacıyla kullanılan algoritmaların en başarılılarından olan Canada-Nevada algorithması kısaca açıklanıyor ve bu algoritmanın başarılı olurken, tezde uygulanlann başarısız olmasının nedenleri tartışılıyor. Aynca nöron algorithmalanyîa birlikte Box Jenkins yöntemi de uygulanıyor. Earthquake Prediction is a mainly unsolved problem. A îarge number of different approaches have been tried and only a small number of attempts were fruitfuî. A few of these are explained briefly in this thesis. Öne of the most succesfui earthquake prediction sytems in use today is the Canada-Nevada, CN, algorithm. it is discussed and contrasted to the neural networks impiemented in the project. For this project the earthquake prediction problem is treated as a time series prediction problem and neural networks that have been used for ordinary time series prediction with some success have been applied to the problem. The data used was treated as a two dimensionaî time series with two variables; the magnitude of the present earthquake, and the time elapsed since the previous earthquake. The neural network architectures impiemented were the multilayer perceptron network with sigmoidal activation îunction, NADINE, and a multilayer network with chaotic activation îunction. Theresults were not succesfui because of the complex nature of input data and the earthquake generation process. 102 |