Autor: |
Arnold, M., Bourlès, D. L., Finkel, R. C., Nottoli, E., Aumaître, G., Keddadouche, K., Benedetti, L., Braucher, R., Merchel, S. |
Jazyk: |
angličtina |
Rok vydání: |
2011 |
Předmět: |
|
Zdroj: |
12th International Conference on Accelerator Mass Spectrometry (AMS-12), 20.-25.03.2011, Wellington, New Zealand |
Popis: |
Since the acceptance tests of ASTER in March 2007, routine measurement conditions for the long-lived radionuclides 10Be and 26Al have been established. Sample throughput as high as over 3300 unknowns has been reached for 10Be in 2010. Steady numbers for 26Al within the last three years settle down ~300 real samples. Unacceptable cross-contamination for volatile elements has been largely solved by an ion source upgrade [1]. Thus, the second frequent nuclide measured at ASTER in 2010 is 36Cl with ~480 sample targets. The enhancement with respect to immediate short-term sample to sample by the new ion source is impressive allowing minimal measurement time losses such as for initial burn-in periods of 5 min for virgin targets and waiting periods between data acquisition of two sample runs of 2 min. However, recent long-term tests using 35Cl/37Cl samples with strongly varying ratios have shown that identical targets lead to different 35Cl/37Cl results at the 2-4% level when being measured after a time gap of 24 hours while the source is running other samples. Reasons for this such as source memory, time dependent mass fractionation, drift of the Faraday-cup measurement system or something else are not yet clear. Finally, after establishing quality assurance at ASTER by cross-calibration of secondary in-house 26Al and 41Ca standards [1] and taking part in round-robin exercises of 10Be and 36Cl, we performed a two-step cross-calibration of secondary in-house 129I standards. The two ampoules of NIST 3231 containing 129I/127I at 0.981x10-6 have been used for step-wise dilution with NaI (MERCK, suprapur, 99.99 %) to get gram-quantities of lower-level standards for every-day use. The material SM-I-9 (~1x10-9) has been measured vs. AgI produced from the two NIST ampoules with (0.982+0.012)x10-8 solution using minimum chemistry. In a second stage, SM-I-10 and SM-I-11 with ratios of ~1x10-10 and ~1x10-11, respectively, have been cross-calibrated against SM-I-9. Individual uncertainties of the traceable secondary standards are around 1.5 %, mainly originating from the given uncertainty of the primary NIST 3231 at 10-8. References: [1] M. Arnold et al., NIMB 268 (2010) 1954. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|