Passive magnetische Abschirmung für 0,22T In-Beam-MR-Bildgebung bei Protonen-Pencil Beam Scanning-Bestrahlung

Autor: Semioshkina, E., Bradley, M. O., Aswin, L. H.
Jazyk: němčina
Rok vydání: 2022
Zdroj: 53. Jahrestagung der Deutschen Gesellschaft für Medizinische Physik 24. Jahrestagung der Deutschen Sektion der ISMRM, 21.09.2022, Aachen, Deutschland
Popis: Einleitung Zum ersten Mal wurde ein MR-Scanner (0,22 T) mit einer horizontalen Protonen Pencil Beam Scanning (PBS) Strahlführung integriert. Die Herausforderung hierbei ist die elektromagnetische Wechselwirkung zwischen magnetischen Streufeldern, erzeugt von Strahlsteuermagneten (SSM), und dem statischen Magnetfeld (B0) des MR-Scanners. Diese führt zu Geisterbildartefakten in den MR-Bildern, wie in Abbildung 1 gezeigt[1]. Passive magnetische Abschirmung ist eine mögliche Lösung zur Beseitigung dieser Artefakte. In dieser Studie bestimmen wir den magnetischen Abschirmungsfaktor (MAF), der für eine artefaktfreie MR-Bildgebung während der PBS-Bestrahlung erforderlich ist. Außerdem untersuchen wir die Auswirkung von Design-Parametern einer passiven magnetischen Abschirmung, die um die SSMs positioniert ist, auf die Reduzierung der Stärke ihrer Streufelder. Material & Methoden Eine Magnetfeldkamera (MFK) wurde im MR-Isozentrum positioniert um Änderungen vom B0-Feld (ΔB0) aufgrund des Streufelds der SSMs zu messen. Variiert wurden dabei sowohl die Strahlfeldgröße als auch der Abstand zwischen MR-Isozentrum und PBS-Isozentrum. Für verschiedene Parameterkombinationen wurden Bilder des ACR Small Phantoms während der Bestrahlung aufgenommen, und die prozentuale Signal Ghosting Ratio (PSGR) berechnet, um den maximalen ΔB0-Wert zu bestimmen, für welchen das ACR-Kriterium von PSGR ≤ 0,025 noch erfüllt wurde[2]. Finite-Elemente-Modell (FEM) Simulationen der PBS-Strahlführung wurden durchgeführt, um die von den SSMs erzeugten magnetischen Streufelder zu berechnen. Für eine magnetische Abschirmung wurden verschiedene Parameter untersucht, wie Geometrie, Materialdicke, Anzahl der Schichten und Größe dazwischenliegenden Luftspalts. Der MAF wurde an der Position des MR-Isozentrums berechnet. Ergebnisse Die MFK-Messungen ergaben, dass der maximale ΔB0-Wert 5,66 μT betrug. Der PSGR-Test wurde nur bei Feldgrößen von 1,2, 4 und 12 cm und bei Abständen von 0,3, 1,3 bzw. 2,3 m zwischen dem PBS- und MR-Isozentrum bestanden. In diesen Fällen betrug der maximale ΔB0-Wert 0,27 μT. Daher ist für eine artefaktfreie MR-Bildgebung während der PBS-Dosisabgabe ein Mindestabschirmungsfaktor von 20,22 erforderlich. Auf der Grundlage von FEM-Simulationen lässt sich dieser MAF am effektivsten durch eine mehrschichtige zylindrische Abschirmung erreichen. Ein MAF von 21 wurde durch die Verwendung von zwei konzentrischen Schichten mit einer Dicke von jeweils 10 mm und einem Luftspaltabstand von 10 mm erreicht. Diskussion Der magnetische Abschirmungsfaktorwurde experimentell für den 0,22-T-In-Beam-MR-Scanner Beamline bestimmt. Computersimulationen zeigten, dass dieser Abschirmungsfaktor mit einer passiven magnetischen Abschirmung erreicht werden kann, wobei eine mehrschichtige konzentrische Geometrie aus Kohlenstoffstahl mit einem Luftspalt zwischen den Schichten verwendet wird. Literatur [1] S. Gantz et al. 2020 Phys. Med. Biol. [2] Small Phantom Guide, American College of Radiology
Databáze: OpenAIRE