PAC-Bayes with Unbounded Losses through Supermartingales

Autor: Haddouche, Maxime, Guedj, Benjamin
Přispěvatelé: MOdel for Data Analysis and Learning (MODAL), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS), Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille), University College of London [London] (UCL), Computer science department [University College London] (UCL-CS), The Alan Turing Institute, The Inria London Programme (Inria-London), University College of London [London] (UCL)-University College of London [London] (UCL)-Institut National de Recherche en Informatique et en Automatique (Inria)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: While PAC-Bayes is now an established learning framework for bounded losses, its extension to the case of unbounded losses (as simple as the squared loss on an unbounded space) remains largely uncharted and has attracted a growing interest in recent years. We contribute to this line of work by developing an extention of Markov's inequality for supermartingales, which we use to establish a novel PAC-Bayesian generalisation bound holding for unbounded losses. We show that this bound extends, unifies and even improves on existing PAC-Bayesian bounds.
Databáze: OpenAIRE