Subhedge Projection for Stepwise Hedge Automata

Autor: Al Serhali, Antonio, Niehren, Joachim
Přispěvatelé: Linking Dynamic Data (LINKS), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: 24th International Symposium on Fundamentals of Computation Theory, FCT 2023
24th International Symposium on Fundamentals of Computation Theory, FCT 2023, Sep 2023, famagusta, Cyprus
Popis: International audience; We show how to evaluate stepwise hedge automata (SHAs) with subtree projection. Since this requires to pass finite state information top-down, we introduce the notion of downward stepwise hedge automata. We then use them in order to define an in-memory and a streaming evaluator with subhedge projection for SHAs. We tune the streaming evaluator so that it can decide membership at the earliest time point. We apply our algorithms to the problem of answering regular XPath queries on XML streams. Our experiments show that subhedge projection can indeed speed up earliest query answering on XML streams.
Databáze: OpenAIRE