Omnidirectional mobile platform teleoperation with force-feedback

Autor: Leibner, Dean
Přispěvatelé: Petrović, Ivan
Jazyk: chorvatština
Rok vydání: 2016
Předmět:
Popis: U ovom diplomskom radu implementirano je daljinsko vođenje svesmjerne mobilne platforme s povratnom vezom po sili. U tu svrhu korišten je programski jezik C/C++, a implementacija je napravljena u okruženju robotskog operativnog sustava. Algoritam proračuna virtualne sile zasniva se na informaciji o udaljenosti prepreka od mobilne platforme, koje računalo dobiva od laserskog senzora udaljenosti. Iznos virtualne sile, osim za generiranje sile na upravljačku palicu, koristi se i za autonomno gibanje svesmjerne mobilne platforme prema naprijed, s lateralnim izbjegavanjem prepreka. Osim toga, u radu su implementirana još dva algoritma autonomnog gibanja platforme, mVFH i mVFH+. Ovi algoritmi preferiraju gibanje prema naprijed, a eventualne prepreke izbjegavaju se rotacijom platforme. U okviru rada implementirana je i kombinacija mVFH+ algoritma s dodanim lateralnim gibanjem i mogućnošću teleoperacije. Tako tijekom odvijanja autonomnog gibanja operater može utjecati na smjer gibanja platforme. Platformom je moguće upravljati korištenjem grafičkog sučelja dizajniranog u okruženju robotskog operativnog sustava, gdje se algoritmi odabiru kao različiti režimi upravljanja platformom. Svi razvijeni algoritmi testirani su i evaluirani u stvarnom okruženju. In this master thesis, the teleoperation of the omnidirectional mobile platform with force-feedback was designed. For this purpose, C/C++ programming language was used, while the whole structure was implemented within the robot operating system environment. The herein implemented force-feedback algorithm is based on information about obstacles around a mobile platform, which computer gets from a laser range sensor. A calculated virtual force is used to generate real force on Haptic joystick and also for autonomous navigation of mobile platform with lateral obstacle avoidance. Besides, in this thesis two additional algorithms for autonomous navigation of the mobile platform were implemented, i.e., mVFH and mVFH+. These algorithms prefer forward movement of the mobile platform while the platform avoids obstacles by executing rotation. Also, the combination of mVFH+ algorithm, with added lateral movement and possibility of teleoperation, was implemented, so that the operator can influence the direction where the mobile platform moves autonomously. Platform can be operated using graphical user interface designed using robot operating system environment, where algorithms can be chosen as different working modes. All implemented algorithms were tested and evaluated in real-world environment.
Databáze: OpenAIRE