Extraction and Classification of Acoustic Features from Italian Speaking Children with Autism Spectrum Disorders

Autor: Beccaria Federica, Gagliardi Gloria, Dimitrios Kokkinakis
Přispěvatelé: D. Kokkinakis, C. K. Themistocleous, K. Lundholm Fors, A. Tsanas, K. C. Fraser, Beccaria Federica, Gagliardi Gloria, Dimitrios Kokkinakis
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: Autism Spectrum Disorders (ASD) are a group of complex developmental conditions whose effects and severity show high intraindividual variability. However, one of the main symptoms shared along the spectrum is social interaction impairments that can be explored through acoustic analysis of speech production. In this paper, we compare 14 Italian-speaking children with ASD and 14 typically developing peers. Accordingly, we extracted and selected the acoustic features related to prosody, quality of voice, loudness, and spectral distribution using the parameter set eGeMAPS provided by the openSMILE feature extraction toolkit. We implemented four supervised machine learning methods to evaluate the extraction performances. Our findings show that Decision Trees (DTs) and Support Vector Machines (SVMs) are the best-performing methods. The overall DT models reach a 100% recall on all the trials, meaning they correctly recognise autistic features. However, half of its models overfit, while SVMs are more consistent. One of the results of the work is the creation of a speech pipeline to extract Italian speech biomarkers typical of ASD by comparing our results with studies based on other languages. A better understanding of this topic can support clinicians in diagnosing the disorder.
Databáze: OpenAIRE