Autor: |
Perrichon, Remi, Gendre, Xavier, Klein, Thierry |
Přispěvatelé: |
Ecole Nationale de l'Aviation Civile (ENAC), Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Popis: |
While advanced methods for functional data analysis have recently been developed in the literature, applications to aircraft trajectories have remained scarce, despite operational relevance. One reason is the practical difficulties affiliated with the multivariate nature of trajectories and associated physical constraints. Indeed, an aircraft trajectory usually involves three dimensions in space (longitude, latitude, altitude) but also weather values (say wind speed and direction), each dimension having its specificities. To name a few, smoothing altitude values requires to ensure both non-negativity and boundary constraints. Wind directions have support on the unit circle. Additional to constrained smoothing challenges, phase variations are to be taken into account as flights are never of the same duration. To tackle these issues, two smoothing methods respectively based on constrained splines and asymmetric kernels are implemented on real data. For each approach, two strategies to handle the circular nature of wind directions are compared. Registration is performed. A joint pointwise test is proposed to demonstrate that delayed flights have experienced less favorable wind conditions. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|