Aeroelastic analysis of high aspect ratio and strut-braced wings

Autor: Lamer, Yoann Le, Morlier, Joseph, Benard, Emmanuel, He, Ping
Přispěvatelé: Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Institut Clément Ader (ICA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Iowa State University (ISU)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: 33th Congress of the International Council of the Aeronautical Sciences
33th Congress of the International Council of the Aeronautical Sciences, Sep 2022, Stockholm, Sweden. 11 p
Popis: International audience; Increasing the aspect ratio of transonic aircraft wings represent a promising path to allow aviation to reduce its carbon footprint. The objective of this study is to develop sufficiently accurate aero-structural models in order to fully exploit High Aspect Ratio (HAR) wings drag reduction and performance improvements potential at preliminary design stage. The use of a multifidelity approach makes it possible to reduce computational costs by mainly resorting to low-fidelity computations and only running high-fidelity computations when necessary. The first step is to develop high and low fidelity models to perform static aeroelastic analysis on the NASA CRM wing. These models will be used as a baseline to be compared with other configurations of interest. Afterwards, models are developed for a modified version of the CRM wing with a higher aspect ratio, and static aeroelastic analysis are carried out. Finally, a Strut-Braced Wing (SBW) configuration is studied to evaluate its mass reduction potential, in addition to the drag reduction provided by the increased aspect ratio. These aero-structural models are implemented within an in-house aeroelastic analysis and optimization framework. This works focuses on aeroelastic analysis for now, but is to be extended to aeroelastic optimization, using a multifidelity approach.
Databáze: OpenAIRE