X -ARMED BANDITS: OPTIMIZING QUANTILES, AND OTHER RISKS

Autor: Torossian, Léonard, Garivier, Aurélien, Picheny, Victor
Přispěvatelé: Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRA), Institut National de la Recherche Agronomique (INRA), Institut de Mathématiques de Toulouse UMR5219 (IMT), Centre National de la Recherche Scientifique (CNRS)-PRES Université de Toulouse-Université Toulouse III - Paul Sabatier (UPS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS), PROWLER.io, 72 Hills Road, Cambridge
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Popis: We propose and analyze StoROO, an algorithm for risk optimization on stochastic black-box functions derived from StoOO. Motivated by risk-averse decision making fields like agriculture, medicine, biology or finance, we do not focus on the mean payoff but on generic functionals of the return distribution, like for example quantiles. We provide a generic regret analysis of StoROO. Inspired by the bandit literature and black-box mean optimizers, StoROO relies on the possibility to construct confidence intervals for the targeted functional based on random-size samples. We explain in detail how to construct them for quantiles, providing tight bounds based on Kullback-Leibler divergence. The interest of these tight bounds is highlighted by numerical experiments that show a dramatic improvement over standard approaches.
Databáze: OpenAIRE