Popis: |
Summarization: The elastoplastic dynamic mechanical behavior of thin metallic films excited by a nanosecond laser pulse is studied. The dynamic response of the metal films is numerically described by a coupled thermal-structural, transient three-dimensional model based on the finite element method. The developed finite element model takes into account the temperature-dependent true stress-strain curves, the temperature-dependent thermal properties and matters phase changes. Since the numerical simulations include the dynamic changes of the metallic materials mechanical properties, the obtained spatiotemporal numerical solutions provide detailed descriptions of their elastoplastic response. Thus, the experimentally validated model is able to diagnose and predict spatiotemporally matters elastic and plastic deformations that occur during the interaction with a nanosecond laser pulse. Gold, copper, and aluminum thin metallic films are used as test cases to demonstrate the effectiveness of the proposed finite element modeling and simulation. Παρουσιάστηκε στο: International Journal of Damage Mechanics |