Autor: |
Alevizos Panagiotis |
Přispěvatelé: |
Μπλετσας Αγγελος, Bletsas Aggelos, Καρυστινος Γεωργιος, Karystinos Georgios, Δεληγιαννακης Αντωνιος, Deligiannakis Antonios, Λαγουδακης Μιχαηλ, Lagoudakis Michael, Πατερακης Μιχαλης, Paterakis Michalis, Λιαβας Αθανασιος, Liavas Athanasios, Σιδηροπουλος Νικος, Sidiropoulos Nikos, Επιβλέπων: Μπλετσας Αγγελος, Advisor: Bletsas Aggelos, Μέλος επιτροπής: Καρυστινος Γεωργιος, Committee member: Karystinos Georgios, Μέλος επιτροπής: Δεληγιαννακης Αντωνιος, Committee member: Deligiannakis Antonios, Μέλος επιτροπής: Λαγουδακης Μιχαηλ, Committee member: Lagoudakis Michael, Μέλος επιτροπής: Πατερακης Μιχαλης, Committee member: Paterakis Michalis, Μέλος επιτροπής: Λιαβας Αθανασιος, Committee member: Liavas Athanasios, Μέλος επιτροπής: Σιδηροπουλος Νικος, Committee member: Sidiropoulos Nikos |
Jazyk: |
angličtina |
Předmět: |
|
Popis: |
Summarization: Ubiquitous sensing anywhere and anytime is envisioned under the general umbrella of Internet-of-Things (IoT). The objective of this dissertation is to contribute ultra-low-power IoT technology, exploiting novel concepts in wireless communications and networking. The first part of this work studies far field radio frequency (RF) energy harvesting, taking into account non-linearity, sensitivity, and saturation effects of existing rectenna circuits. The proposed methodology offers the statistics of the harvested power for any given rectenna model, under mild assumptions. It is also demonstrated that currently-used linear RF harvesting models in the literature deviate from reality. In the second part, scatter radio technology, i.e., communication via means of reflection, is studied in order to enable ultra-low-power radio communication with single-transistor front-ends. The thesis proposes low-complexity detection schemes as well as decoding techniques for short block-length channel codes, tailored to coherent, as well as noncoherent reception of scatter radio. The goal was to target resource-constrained, i.e., hardware-``thin'', scatter radio tags and simple, low-latency receivers. The developed detection and decoding algorithms are based on composite hypothesis testing framework. Interestingly, it is demonstrated that the bit error rate (BER) performance gap between coherent and noncoherent reception depends on the kind of channel codes employed, the fading conditions, as well as the utilized coding interleaving depth. The third part of this work proposes a multistatic scatter radio network architecture, based on orthogonal signaling, contrasted to existing architectures for dyadic Nakagami fading. Orthogonal signaling allows for collision free multi-user access for low-bitrate tags. It is shown that the proposed scatter radio architecture offers better diversity order, more reliable reception, as well as better field coverage, while demonstrating smaller sensitivity to the topology of the scatter radio tags, compared to existing monostatic architecture. Finally, the last part of the dissertation studies resource allocation in multi-cell backscatter sensor networks (BSNs). The average long-term signal-to interference-plus-noise ratio (SINR) of linear detectors is explored for multi-cell BSNs, and subsequently harnessed to allocate frequency sub-channels at tags. The proposed resource allocation algorithm is based on the Max-Sum inference algorithm and its convergence-complexity trade-off is quantified. Experimental studies in an outdoor scatter radio testbed corroborate the theoretical findings of this work. Hopefully, this thesis will establish the viability of scatter radio for ultra-low-power communications, enabling critical current and future IoT applications. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|