PERFORMANCE OF TRANSMISSION COIL IN WIRELESS TRANSMISSION SYSTEM ENERGIES WITH HOMOGENE MAGNETIC FIELD DISTRIBUTION
Autor: | Bilandžija, Domagoj |
---|---|
Přispěvatelé: | Vinko, Davor |
Jazyk: | chorvatština |
Rok vydání: | 2023 |
Předmět: |
exhaustive search
Elektrotehnika TECHNICAL SCIENCES. Electrical Engineering. Radio Communications Beˇziˇcni prijenos energije kosimulacija udc:621.3(043.3) optimizacija 3D predajne zavojnice Electrical engineering TEHNIČKE ZNANOSTI. Elektrotehnika. Radiokomunikacije algoritmi evolucijskog raˇcunanja populacijski al homogeno magnetsko polje 3D transmitting coil optimization co-simulation Wireless power transfer iscrpno pretraˇzivanje evolutionary computation algorithms homogeneous magnetic field population based algorithms |
Popis: | Razdvajanje frekvencije i neuskladenost impedancije posljedice su promjene faktora magnetske veze izmedu predajne i prijemne zavojnice odnosno promjene poloˇzaja prijemne zavojnice u odnosu na predajnu zavojnicu u konvencionalnom rezonantnom induktivnom sustavu za beˇziˇcni prijenos energije. Problemi razdvajanja frekvencije i neuskladenosti impedancije u rezonantnom induktivnom prijenosu energije mogu se ublaˇziti generiranjem homogenog magnetskog polja u ve´cini povrˇsine ravnine punjenja. Homogenost magnetskog polja postiˇze se optimiranjem geometrije predajne zavojnice i optimiranjem raspodjele struje izmedu namotaja iste zavojnice. U ovoj disertaciji provodi se postupak odredivanja strukture dvoslojne pravokutne predajne 3D zavojnice za generiranje homogenog magnetskog polja iscrpnim pretraˇzivanjem. Mjerenja magnetskog polja na prototipu takve zavojnice potvrduju homogenu regiju koja ˇcini 55.3% povrˇsine ravnine napajanja. Nakon ˇsto je odredena struktura predajne zavojnice uvodi se pretpostavka da ´ce raspodjela struje izmedu namotaja predajne zavojnice uz optimizaciju geometrije sada poznate strukture pridonijeti poboljˇsanju svojstava predajne zavojnice. Optimizacija se provodi u dva koraka: optimizacija 2D modela i optimizacija 3D modela. Razlog tome je smanjenje prostora pretraˇzivanja 147 B. SAZETAK ˇ odnosno dimenzije problema koji se nastoji rijeˇsiti optimizacijom 3D modela. Optimalne vrijednosti varijabli odluka iz optimizacije 2D modela (geometrijske varijable drugog sloja zavojnice, omjer struja) koriste se kao konstante u optimizaciji 3D modela. Optimizacija 2D modela 3D predajne zavojnice obavlja se u kosimulaciji Python-FEMM uz pomo´c MIDACO alata i genetskog algoritma te diferencijalne evolucije iz pygmo biblioteke. Najbolja rjeˇsenja fitnes funkcije ostvarena su diferencijalnom evolucijom. Nuˇzna je i optimizacija u Ansys Maxwell-u zbog toga ˇsto je to programski paket koji ima opciju simulacije, a takoder i optimizacije 3D modela s pomo´cu alata Optimetrics tool. Odabire se konstanta udaljenost prijenosa od 30 mm. Tako optimirana zavojnica ima bolja svojstva u odnosu na prvotnu. Homogena regija ˇcini 67.78% povrˇsine ravnine napajanja, dubina zavojnice smanjena je za 28.8% te je postignuta ve´ca srednja vrijednost jakosti magnetskog polja u ravnini napajanja. Frequency splitting and impedance mismatching are happening due to magnetic coupling factor variations. i.e. due to relative shift in receiving coil position with respect to transmitting coil in a conventional resonant inductive wireless power transfer system. Frequency splitting and impedance mismatching can be mitigated by generating homogeneous magnetic field intensity at the majority of the charging plane surface. Homogeneity of the magnetic field intensity are achieved by optimization of the transmitting coil geometry and current ratio among the coil turns. In this PhD thesis, the process of determining geometry of the 3D rectangular coil with two layers using exhaustive search is carried out. Measurements that were carried out with prototype of such optimized 3D coil verified that homogeneous region occupies at least 55.3% of the charging plane surface. Then, after the 3D coil structure is determined, a hypothesis is introduced. It is supposed that different current ratio among turns of such coil along with geometry optimization will contribute to achieve better features of known 3D coil structure. Optimization is carried out in two steps: optimization of the 2D model and optimization of the 3D model. Main reason to split optimization is to reduce the search space, i.e. dimension of the problem that is trying to be solved. Optimal va149 B. ABSTRACT lues of decision variables (variables that represent coil second layer geometry and current ratio) obtained from 2D model optimization are used as constants in optimization of 3D model. 2D model optimizations are executed in Python-FEMM co-simulation along with MIDACO tool. Furthermore, genetic algorithm and differential evolution from pygmo library are also applied in solving 2D model optimization. Best fitness function value is acheived using differential evolution strategy. Optimization in Ansys Maxwell is necesarry because of its feature that 3D models can be simulated and also optimized using Optimetrics Tool of Ansys Maxwell. Transfer distance in both 2D and 3D models is set to be 30 mm. Such optimized coil own better features compared to coil obtained by exhaustive search. Homogeneous region now occupies 67.78% of charging plane surface, coil depth is reduced by 28.8% and also the higher value of average magnetic field intensity at charging plane is achieved. |
Databáze: | OpenAIRE |
Externí odkaz: |