Algebraic methods in graph theory
Autor: | Kurtoić, Tomislav |
---|---|
Přispěvatelé: | Kožić, Slaven |
Jazyk: | chorvatština |
Rok vydání: | 2022 |
Předmět: |
linearna algebra
Laplace matrix incidence matrix adjacency matrix resistance matrix matrica susjedstva graph theory matrica otpora matrica udaljenosti stabla teorija grafova linear algebra PRIRODNE ZNANOSTI. Matematika Laplaceova matrica distance matrix of a tree NATURAL SCIENCES. Mathematics matrica incidencije |
Popis: | Glavna svrha ovog rada je pokazati na koji način su povezana područja linearne algebre i teorije grafova te kako njihovu vezu možemo iskoristiti za rješavanje problema u stvarnom životu. U prvom poglavlju navodimo definicije, teoreme i rezultate iz linearne algebre i teorije grafova koji su nužni za shvaćanje glavnog dijela rada. Drugo, treće i četvrto poglavlje bavi se proučavanjem matrice susjedstva, matrice incidencije i Laplaceove matrice. Definiramo svaku od navedenih matrica, na stvarnim primjerima prikazujemo načine njihovog određivanja te prezentiramo njihove primjene u proučavanju pripadnih grafova. U petom i šestom poglavlju promatramo matricu udaljenosti stabla i matricu otpora. Definiramo navedene matrice i proučavamo njihova svojstva i primjene. Poseban naglasak je dan na rezultate vezane uz njihove svojstvene vrijednosti, determinante i povezanosti s Laplaceovom matricom. The main purpose of this thesis is to show the connections between linear algebra and graph theory and their applications to solving real life problems. In the first chapter we give basic definitions, theorems and results from linear algebra and graph theory which are vital for further understanding of the thesis. In chapters two, three and four we are focused on adjacency and incidence matrices along with the Laplacian matrix. We define each of these matrices, we show how to determine them by using real life examples and we present their applications to the study of the underlying graphs. In the last two chapters, chapters five and six, we examine the distance matrix of a tree and the resistance matrix. We introduce the aforementioned matrices and study their properties and applications. Special emphasis is given to the results concerning their eigenvalues, determinants and connections with the Laplacian matrix. |
Databáze: | OpenAIRE |
Externí odkaz: |