Matematika labirinata

Autor: Knežević, Marko
Přispěvatelé: Bruckler, Franka Miriam
Jazyk: chorvatština
Rok vydání: 2015
Předmět:
Popis: Labirinti imaju dugu povijest, a uz logičko razmišljanje potrebno za njihovo osmišljavanje i rješavanje postoje mnogi drugi matematički aspekti. U ovom diplomskom radu dajemo pregled tih aspekata tako da bude jasan čitateljima raznih uzrasta i matematičkog predznanja. U uvodnom dijelu dajemo kratak povijesni pregled, te uvodimo osnovne pojmove teorije grafova potrebne za razumijevanje algoritama navedenih u radu. Glavni dio rada čine detaljno opisani algoritmi za generiranje i rješavanje labirinata. Algoritmi su prikazani pseudokodom pa čitatelj može provesti korake na papiru i na taj način demonstrirati generiranje ili rješavanje labirinta. Ukoliko imamo dovoljno računalnog predznanja, pseudokodove možemo implementirati u neki od programskih jezika te na taj način generirati ili rješavati labirinte pomoću računala. Rad je dopunjen primjerima upotrebe teme u popularizaciji matematike. Primjeri se mogu iskoristiti i u nastavi matematike, a jedan od primjera je osmišljen i proveden u sklopu kolegija Metodička praksa iz matematike u osnovnoj školi. Mazes have a long history and there are a lot of other mathematical aspects beside the logical reasoning needed for generating and solving them. In this thesis a clear and comprehensive overview of these aspects is presents, understandable to a wide range of readers of various ages and mathematical backgrounds. A brief history of mazes is presented in the opening part, as are basic notions of graph theory needed for understanding of presented algorithms. The main part of the thesis are maze generation algorithms and maze solving algorithms, which are described in detail. Algorithms are described in pseudocode and the reader can follow the steps to demonstrate generating or solving a maze with a pen and paper. Readers with a sufficient level of computer knowledge could implement the pseudocodes in a computer language of their choice and use them to generate or solve mazes. The thesis is supplemented with examples of how to use mazes in popularization if mathematics. The examples can be used in teaching as well, and one of the examples was particularly designed and conducted in the course Methodical practice of mathematics in elementary school.
Databáze: OpenAIRE