Puce photonique reconfigurable en silicium pour la génération de Qudits enchevêtrés dans des bacs de fréquence

Autor: Borghi, Massimo, Tagliavacche, Noemi, Sabattoli, Federico Andrea, Dirani, Houssein El, Youssef, Laurene, Petit-Etienne, Camille, Pargon, Erwine, Sipe, J.E., Liscidini, Marco, Sciancalepore, Corrado, Galli, Matteo, Bajoni, Daniele
Přispěvatelé: Università degli Studi di Pavia = University of Pavia (UNIPV), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), University of Toronto
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Physical Review Applied
Physical Review Applied, 2023, 19 (6), pp.064026. ⟨10.1103/PhysRevApplied.19.064026⟩
ISSN: 2331-7019
DOI: 10.1103/PhysRevApplied.19.064026⟩
Popis: International audience; Quantum optical microcombs in integrated ring resonators generate entangled photon pairs over many spectral modes, and allow the preparation of high dimensional qudit states. Ideally, those sources should be programmable and have a high generation rate, with comb lines tightly spaced for the implementation of efficient qudit gates based on electro-optic frequency mixing. While these requirements cannot all be satisfied by a single resonator device, for which there is a trade-off between high generation rate and tight bin spacing, a promising strategy is the use of multiple resonators, each generating photon pairs in specific frequency bins via spontaneous four-wave mixing. Based on this approach we present a programmable silicon photonics device for the generation of frequency bin entangled qudits, in which bin spacing, qudit dimension, and bipartite quantum state can be reconfigured on-chip. Using resonators with a radius of 22 µm, we achieve a high brightness (∼ MHz/(mW) 2) per comb line with a bin spacing of 15 GHz, and fidelities above 85% with maximally entangled Bell states up to a Hilbert space dimension of sixteen. By individually addressing each spectral mode, we realize states that can not be generated on-chip using a single resonator. We measure the correlation matrices of maximally entangled two-qubit and two-qutrit states on a set of mutually unbiased bases, finding fidelities exceeding 98%, and indicating that the source can find application in high-dimensional secure communication protocols.
Databáze: OpenAIRE