Comparison of nonlinear methods for reduced-order modeling of geometrically nonlinear structures

Autor: Touzé, Cyril, Vizzaccaro, Alessandra, Thomas, Olivier, Salles, Loic, Opreni, Andrea, Shen, Yichang, Frangi, Attilio Alberto
Přispěvatelé: Institut des Sciences de la mécanique et Applications industrielles (IMSIA - UMR 9219), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), University of Bristol [Bristol], Laboratoire d’Ingénierie des Systèmes Physiques et Numériques (LISPEN), Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Imperial College London, Politecnico di Milano [Milan] (POLIMI)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: ENOC 2020+2, 10th European Nonlinear Dynamics Conference
ENOC 2020+2, 10th European Nonlinear Dynamics Conference, Jul 2022, Lyon, France
Popis: International audience; The aim of this contribution is to review and compare three different methods that have been proposed in order to derive reduced-order models for geometrically nonlinear structures, and relying on a nonlinear technique to better take into account the nonlinearities of the initial problem. The three methods are: implicit condensation, quadratic manifold derived with modal derivatives, and projection onto an invariant manifold, tangent at the origin to the linear eigenspace of the master modes. The methods are briefly reviewed theoretically and then compared with dedicated examples.
Databáze: OpenAIRE