Self-supervised learning for anomaly detection on time series: application to cellular data

Autor: Bailly, Romain, Malfante, Marielle, Allier, Cédric, Ghenim, Lamya, Mars, Jerome
Přispěvatelé: GIPSA - Signal Images Physique (GIPSA-SIGMAPHY), GIPSA Pôle Sciences des Données (GIPSA-PSD), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Grenoble Alpes (UGA), Département Systèmes et Circuits Intégrés Numériques (DSCIN), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Institut National de la Santé et de la Recherche Médicale (INSERM)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Conférence sur L'apprentissage Automatique
Conférence sur L'apprentissage Automatique, Jun 2021, Saint Etienne, France
Popis: International audience; This paper presents a new method for anomaly detec-tion in time series and its application to cellular data.These time series are computed from cell images ac-quired thanks to lens-free microscopy. In the context ofcellular biology, detecting abnormal cells is interestingfor any further analysis. Indeed, cells that deviate fromhealthy trajectories can further drive tissues towarddiseases [RAG+20]. It would be both time-consumingand costly to manually analyse each cell in a dataset often thoudands cells. To overcome this human process,we present a deep self-supervised approach to automat-ically detect abnormal cells from their dry mass timeseries. A 1D-convolutio nal neural network is trained topredict the dry mass of cells. An anomaly is detected ifthe mean squared error (MSE) between prediction andground truth is above a fixed threshold. This processbased on self-supervised learning is tested on a datasetof 9,100 time series of dry mass. The method succeedsin detecting abnormal time series with a precision of 96.6%.
Databáze: OpenAIRE