Uporaba spektrov vhodnih snovi, posnetih v srednjem in bližnjem infrardečem področju, za pridobitev informacij o končnem izdelku in proizvodnem procesu

Autor: Novak, Mojca
Přispěvatelé: Dreu, Rok
Jazyk: slovinština
Rok vydání: 2020
Předmět:
Popis: Proizvodnja zdravil je ena izmed bolj reguliranih ter nadzorovanih procesov, kjer je kakovost končnega izdelka primarnega pomena. Poleg natančnega nadzora samega procesa izdelave zdravila v proizvodnji, je potrebno nadzorovati tudi materiale, ki vstopajo vanj. Kakovost vsakega vhodnega materiala se preverja s pomočjo laboratorijskih analiz ter spektrov v srednjem in bližnjem infrardečem področju. Slednji se trenutno uporabljajo le za namene identifikacije pomožne snovi ali zdravilne učinkovine, čeprav nosijo veliko informacij tako o kemijskih kot tudi o fizikalnih lastnostih analizirane snovi. Preveriti smo želeli, ali lahko z analizo spektrov raziskujemo razlike med serijami in celo znotraj serije vhodnega materiala. Zato smo s pomočjo multivariatne analize posnetih spektrov preverjali intra-variabilnost znotraj ene serije surovine na podlagi posnetih spektrov posameznih embalažnih enot, ter inter-variabilnost med serijami iste pomožne snovi oziroma zdravilne učinkovine. Hkrati smo s pomočjo metode najmanjših kvadratov izdelali modele, ki iz identifikacijskih spektrov napovedujejo kemijske oziroma fizikalne lastnosti posameznega vhodnega materiala. Z uporabo metode glavnih komponent ter metod za urejanje spektrov, smo odkrili intra-variabilnost med spektri posameznih embalažnih enot znotraj ene serije laktoze in hidroksipropil metilceluloze. Takšne razlike ni mogoče dokazati z drugimi analiznimi pristopi, saj se ne izvajajo na posameznih embalažnih enotah, temveč le na povprečnem vzorcu več embalažnih enot. Dodatno smo proučevali morebitne razlike med serijami brezvodne laktoze, izbrane zdravilne učinkovine ter hidroksipropil metilceluloze, kjer smo podobno kot pri analizi intra-variabilnosti dokazali razlike med serijami obeh pomožnih snovi. Razlike med serijami zdravilne učinkovine so prav tako prisotne, vendar niso signifikantne, kar je pričakovano, saj je proizvodnja zdravilnih učinkovin veliko bolj nadzorovana kot proizvodnja pomožnih snovi. S pomočjo metode najmanjših kvadratov smo izdelali še napovedne modele, ki iz identifikacijskih spektrov v bližnjem infrardečem področju z majhno napako napovedujejo fizikalne oziroma kemijske lastnosti izbranih surovin. Taki modeli bi lahko nadomestili laboratorijske analize, ki se uporabljajo za določanje lastnosti pomožnih snovi, s čimer bi se izognili človeški napaki ob izvajanju klasičnih analiz ter signifikantno skrajšali čas in zmanjšali ceno izvedbe analiz vhodnih materialov. Manufacturing a drug is one of the most controlled and regulated processes, where the quality of the end product is the main concern. In addition to the strict control of the manufacturing process, it is also important to control every material that enters the manufacturing process. The quality of every in-coming material is controlled with laboratory analyses and MID IR or NIR spectra. The latter are currently used only for the purpose of identification, even though these spectra carry a lot of information about the chemical and physical properties of the analyte. Therefore we wanted to check if by analyzing these spectra with multivariate analysis tools, variability between batches of produced raw material and even within a single selected batch could be detected. In addition to that, we have made models by using partial least squares, which predict chemical or physical properties of selected incoming materials from ID spectra. By using principal component analysis, variability within a single batch of anhydrous lactose and hydroxipropil metilcellulose (HPMC) have been detected. Such variability cannot be detected with other analytical tools, since they are performed on an average sample that contains the analyte from 3 packaging units, whereas spectra are measured on every packaging unit. Additionally, we have detected variability between batches produced in the previous three years of anhydrous lactose, selected active ingredient and HPMC. Variability between batches of the active ingredient was not as significant as the variability between spectra of lactose and HPMC. However, smaller variability is expected, since the production of active ingredients is much more controlled. By using the partial least square method we have made models, that predict physical or chemical properties from MID IR or NIR spectra. These models could, in the future, replace laboratory analyses, that are used to determine raw materials properties. This way human error while performing analyses could be avoided and in-coming materials could be released faster.
Databáze: OpenAIRE