Popis: |
Nanovlakna so v zadnjem času vzbudila precej zanimanja za uporabo pri zdravljenju kožnih ter sluzničnih bolezni in poškodb. Med te bolezni spadajo tudi kronične rane, katere patofiziologija je tesno povezana z neuravnoteženim imunskim sistemom, ki ga lahko nadziramo z uporabo imunomodulatornih učinkovin. Takšno delovanje imajo tudi naravne snovi, ki se nahajajo v ekstraktu Cannabis sativa L., med katerimi je najbolj znana molekula kanabidiol (CBD). V magistrski nalogi smo se usmerili na izdelavo matematičnega modela po metodi načrtovanja eksperimentov (DoE), ki omogoča izdelavo polimernih nanovlaken z ekstraktom Cannabis sativa L. z ustreznimi lastnostmi. Najprej smo z metodo elektrostatskega sukanja izdelali nanovlakna z različnim deležem polimera polikaprolakton (PCL) in polivinilpirolidona (PVP) ter etanolnim ekstraktom Cannabis sativa L. Za izdelavo modela DoE smo spreminjali sestavo polimerne disperzije (delež polimera in delež ekstrakta) in napetost potrebno za sukanje. V skladu z dobljenim DoE modelom smo izdelali nanovlakna in jim ovrednotili premer na slikah pridobljenih z vrstičnim elektronskim mikroskopom, hidrofilnost površine z merjenjem stičnega kota, z diferenčno dinamično kalorimetrijo smo spremljali fazne prehode, izgubo mase s termogravimetrično analizo ter s FT-IR preverili morebitne interakcije med polimerom in CBD. Vsebnost CBD v nanovlaknih in njegovo sproščanje smo določali s HPLC metodo. Izdelali smo ponovljiv in zanesljiv model DoE za izdelavo enakomernih nanovlaken. Opazili smo, da se CBD v vodnih raztopinah razgradi pod vplivom svetlobe, da je v nanovlaknih prisotnih zelo malo zaostalih topil ter da med polimerom in ekstraktom ne prihaja do interakcij. Nadalje smo dokazali, da se iz različnih nanovlaken lahko sprošča CBD takoj ali podaljšano. Sproščanje iz PCL nanovlaken je podaljšano, iz nanovlaken PVP pa takojšnje, kar je posledica različnih mehanizmov sproščanja. Recently, nanofibers have attracted great interest for the treatment of skin and mucosal diseases and injuries. These include chronic wounds, the pathophysiology of which is closely related to an imbalanced immune system that can be controlled by immunomodulatory drugs. Such an effect can also be obtained with natural substances contained in the extract of Cannabis sativa L., of which the best-known molecule is cannabidiol (CBD). In the master’s thesis, we focused on the development of a mathematical model using the Design of Experiments (DoE) method, which will allow us to produce polymer nanofibers with the extract of Cannabis sativa L. with the desired properties. First, nanofibers with different proportions of polycaprolactone (PCL) and polyvinylpyrrolidone (PVP) and ethanol extract of Cannabis sativa L. were produced using the electrostatic spinning method. To create the DoE model, we varied the composition of the polymeric solutions (proportion of polymer and extract), and the voltage required for electrospinning. According to the resulting DoE model, we fabricated the nanofibers and evaluated their diameter using scanning electron microscopy images, surface hydrophilicity by measuring the contact angle of water on the nanofibers, phase transitions were determined by differential dynamic calorimetry, weight loss by thermogravimetric analysis, and possible interactions between the polymer and CBD were checked by the FT-IR method. The content of the CBD in nanofibers and its release were analyzed using the HPLC method. We have established a reproducible and reliable DoE model for production of uniform nanofibers. We have observed that CBD in aqueous solutions degrades under the influence of light, that very little residual solvent is present in the nanofibers and that there are no interactions between the polymer and the extract. Further was demonstrated that CBD can be released immediately or over a prolonged period from different nanofibers. The release of CBD from PCL nanofibers is prolonged, while that from PVP nanofibers is immediate, resulting from different release mechanisms. |