Gravitacijsko lečenje v učilnici

Autor: Kogoj, Kelli
Přispěvatelé: Zwitter, Tomaž
Jazyk: slovinština
Rok vydání: 2021
Předmět:
Popis: V teoretičnem delu magistrske naloge predstavimo temeljne koncepte prostor-časa, ki združuje tridimenzionalen prostor in čas. Opišemo Schwarzschildovo geometrijo kot rešitev Einsteinovih enačb polja, ki opisuje gravitacijsko polje v okolici sferične mase, ki je približek za astronomske objekte, kot so zvezde in planeti. Izpeljemo enačbo za odklon tira svetlobe v okviru klasične fizike in splošne teorije relativnosti. Iz poenostavljene sheme sistema gravitacijskega lečenja izpeljemo enačbo leče in iz nje zvezo za položaj slike objekta. Opišemo primer, ko so izvir svetlobe, gravitacijska leča in opazovalec poravnani v ravni liniji, in nastane Einsteinov obroč. Omenimo še dve drugi lastnosti gravitacijskega lečenja, tudi povečavo in svetlobno ojačenje slike izvora svetlobe. Opišemo glavne značilnosti gravitacijskega lečenja in dve vrsti pojava – šibko in močno lečenje, katerega poseben primer je mikrolečenje. V praktičnem delu izpeljemo obliko za lečo, ki bi ponazorila gravitacijsko lečenje in predstavimo poskuse, s katerimi bi lahko pokazali značilnosti gravitacijskega lečenja. Podamo nekaj računskih nalog za izračun kota odklona in velikosti Einsteinovega obroča za nekatere astronomske objekte, kot so Sonce, Jupiter ali Soncu podobna oddaljena zvezda. The theoretical part of the master's thesis presents basic concepts of spacetime, which fuses the three dimensions of space and one dimension of time. We describe Schwarzschild geometry as solution to the Einstein field equations that describes the gravitational field outside of a spherical mass and is an approximation for astronomical objects such as many stars and planets. The equation for deflection of light ray is derived within classical physics and theory of general relativity. The lens equation is also derived. We further explain the connection between lens, source and observer position and the position of the source image. We present an Einstein ring that is created when source, lens and observer are all in perfect alignment. Gravitational lensing can magnify the distant sources and amplify their brightness. We describe some main characteristics of gravitational lensing and present two major types of lensing – weak and strong lensing, whose special case is microlensing. In the empirical part we derive the shape of glass lens that characteristics are similar to gravitational lens. We prepare activities and simple experiments to introduce the phenomenon of gravitational lensing in secondary and high school. We demonstrate the effects of gravity with gravity simulator and with glass lens. We give some examples of a deflection angle and Einstein ring for the Sun, the Jupiter and a Sun-like star.
Databáze: OpenAIRE