Modulating tight junctions and the paracellular transport of different epithelial barriers using a novel chitosan derivative
Autor: | Otrin, Katja |
---|---|
Přispěvatelé: | Žakelj, Simon |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
paracelularni transport tesni stiki GCPQ nanodelci transepitelni električni transport transportne študije peroralne oblike endotelijske bariere epitelijske bariere
udc:620.3:661.12(043.3) paracellular transport tight junctions GCPQ nanoparticles transepithelial electrical resistance transport assays |
Popis: | Oral administration is the most common route and also the most convenient choice for drug delivery. Although it offers good patient adherence due to its ease of application, formulations for oral administration are not always easy to develop. Formulation taken orally faces many obstacles on the path to the site of action and it has to reach its target on time and in sufficient concentration. The majority of newly discovered drugs that are not yet released on the market are hydrophobic and will have low oral bioavailability due to their poor solubility in the luminal fluids. One of the measures to improve their solubility is to encapsulate them in amphiphilic polymers. In the case of hydrophobic drugs, GCPQ nanoparticles form highly stable self-assemblies, providing a large potential diffusion gradient and surface area reservoir for faster drug dissolution, as well as promoting drug epithelial transport through nanoparticle adhesion to and invasion into the mucus. Tight junctions are required for the formation of functional epithelial and endothelial barriers that regulate the passage of cells and solutes through paracellular space. In the intestine, reduced paracellular barrier function results in disorders in which the paracellular flux of ions and molecules contributes to symptoms such as diarrhoea, malabsorption and intestinal protein loss. Tight junctions were believed to be very rigid structures, but recent discoveries show that they express different dynamic properties that allow them to reversibly open and close. In this research, the activity of tight junctions was observed in 2 different cell lines MDCK and Caco-2. The main aim of this research was to investigate the sensitivity of tight junctions to GCPQ nanoparticles. Three varieties of GCPQ were used to determine the sensitivity of the tight junctions to hydrophobic/hydrophilic compounds. Of course, for the tight junction to open, a balance of hydrophobicity and hydrophilicity is needed, but it turns out that the polymer that was the most hydrophilic of all opened the tight junctions to an extent that resulted in the greatest increase in permeability in both cell lines. To determine the sensitivity of the tight junctions to GCPQ nanoparticles, transepithelial electrical resistance was measured and the most hydrophilic polymer resulted in the greatest increase in the flux of ions. The next polymer that opened the tight junctions enough to increase the permeability of FITC-dextrans, though not FITC-albumin, was the one with a medium degree of hydrophilicity and the most hydrophobic polymer did not open tight junctions enough to increase the permeability of fluorescently labelled probes. Although transepithelial electrical resistance showed an increase of ion flux, the pore for the permeation of fluorescently marked probes was not wide enough.Besides the sensitivity of the tight junctions, the upper size limit for permeation was investigated. For this, different sizes of fluorescently labelled probes were used. We used 4 kDa FITC-dextran, 20 kDa, 40 kDa, 70 kDa FITC-dextran and 65 kDa FITC-albumin. We measured the appearance of fluorescently labelled probes in the basolateral compartment after administering them to the apical compartment. The samples from the basolateral compartment were taken out every 30 minutes for 2 hours to observe the trend of permeation. The largest size that went through an open tight junction in a significant amount was 65 kDa and that was fluorescently labelled albumin. 65 kDa FITC-albumin has a hydrodynamic radius of 3.5 nm, which is also the upper size limit of an open tight junction. We have proven that GCPQ opens tight junctions to an extent that allows the increased permeability of molecules up to 65 kDa and does not damage the cells irreversibly. Najpogostejša in najenostavnejša pot aplikacije farmacevtskih oblik je peroralna, ki zagotavlja tudi najboljšo adherenco s strani pacientov. Z vidika farmacevtske industrije pa razvoj farmacevtskih peroralnih oblik, ni najenostavnejši. Za te oblike sicer ni potrebno, da so sterilne, je pa treba upoštevati vse ovire, ki so na poti zdravilne učinkovine in/ali farmacevtske oblike do mesta delovanja, do katerih mora zdravilna učinkovina priti ob pravem času in v zadostni koncentraciji/količini. Večina novih zdravilnih učinkovin, ki še niso nujno na tržišču, je hidrofobnih, kar pomeni, da imajo, oz. bodo imele nizko biološko uporabnost zaradi slabe topnosti v luminalnih tekočinah. Obstaja veliko načinov kako izboljšati topnost hidrofobnih učinkovin, ena izmed teh je tudi enkapsulacija hidrofobnih učinkovin v amfifilne polimere. V primeru hidrofobnih učinkovin, GCPQ nanodelci sestavljajo zelo stabilne samozdruževajoče delce, ki imajo velik difuzijski potencial, veliko površino za hitrejše sproščanje učinkovine in promovirajo transepitelni transport učinkovine s pomočjo adhezije in invazije nanodelcev na mukus. Tesni stiki so potrebni za formacijo funkcionalne endotelijske in epitelijske bariere, ki regulira tok celic, topljencev in ionov med celicami. V primeru primanjkljaja tesnih stikov v gastrointestinalnem sistemu, je rezultat povečan tok ionov in molekul, kar se kaže z znaki kot so diareja, malabsorpcija in izguba intestinalnih proteinov. Zelo dolgo je veljalo, da so tesni stiki rigidne strukture, vendar novejše študije kažejo na različne dinamične lastnosti, ki jim omogočajo reverzibilno »odpiranje« in »zapiranje«. Dinamičnost tesnih stikov smo opazovali na dveh celičnih linijah MDCK in Caco-2. MDCK celice so pridobljene iz ledvic psic pasme Koker Španjela, Caco-2 celice pa so človeške intestinalne rakave celice. Lastnosti obeh se razlikujejo, Caco-2 celični tesni stiki so »tesnejši« in bolj kompleksni od MDCK celičnih tesnih stikov, ampak če združimo rezultate obeh, lahko dobro predvidimo absorpcijo iz tankega črevesja. Glavni namen te raziskave je bil študij občutljivosti tesnih stikov na GCPQ polimer za določitev le – te smo uporabili tri variante GCPQ polimera z različno stopnjo hidrofilnosti. Občutljivost tesnih stikov na hidrofobnost oz. hidrofilnost smo opazovali z merjenjem transepitelnega električnega upora, ki nam da informacijo o paracelularnem pretoku ionov. Tranepitelni električni upor se je najbolj zmanjšal v primeru uporabe najbolj hidrofilnega polimera, kar pomeni, da se je takrat paracelularni pretok ionov najbolj povečal. Sledil je srednje hidrofilen polimer, v primeru uporabe hidrofobnega polimera pa se je sicer paracelularni pretok ionov prav tako povečal, vendar pa se pora, skozi katero potujejo ioni in topljenci ni razširila dovolj, da bi opazili tudi povečan prehod fluorescentno označenih prob. Te ugotovitve so potrdile tudi transportne študije fluorescentno označenih markerjev. Uporabili smo različne velikosti FITC-dekstranov in FITC-albumin. Rezultati kažejo, da v primeru uporabe najbolj hidrofilnega polimera, tudi najbolj povečamo paracelularni prehod fluorescnetno označenih prob. Sledil je srednje hidrofilen polimer, medtem ko najbolj hidrofobni polimer ni odprl celičnih tesnih stikov do te mere, da bi lahko opazili bistveno povečan prehod fluorescentno označenih markerjev. Enak trend smo opazili v obeh celičnih linijah.Poleg občutljivosti celičnih tesnih stikov smo opazovali tudi maksimalno odprtost tesnih stikov. Da smo določili to maksimalno odprtost, smo naredili vrsto transportnih študij, kjer smo najprej v apikalni del vdolbinice aplicirali fluorescentno označen marker, po tem pa merili njegovo prisotnost v bazolateralnem delu vdolbinice. Vzorec iz bazolateralnega dela smo vzeli vsakih 30 minut, da smo lahko določili trend permeabilnosti. Poleg fluorescentno označenih dekstranov, ki so linearni polimeri, smo uporabili tudi fluorescentno označen albumin, ki ima zaradi proteinske narave, veliko bolj rigidno strukturo. FITC-albumin je velik 65 kDa in je med testiranimi največja molekula, ki gre skozi tesne stike do signifikantne mere. Hidrodinamski radij FITC-albumina znaša 3.5 nm, kar predstavlja tudi maksimalno odprtost tesnih stikov. |
Databáze: | OpenAIRE |
Externí odkaz: |