Napovedovanje dnevnega diagrama porabe električne energije s pomočjo mehke logike

Autor: ŠKRJANC, JANEZ
Přispěvatelé: Pantoš, Miloš
Jazyk: slovinština
Rok vydání: 2021
Předmět:
Popis: Elektroenergetski sistem je eden največjih sistemov, ki jih je človek izumil. Povezuje različne tipe elektrarn, od nukleark pa do vetrnih, z različnimi porabniki, od rezidenčnih do industrijskih. S pojavom podmorskih enosmernih visokonapetostnih kablov (HVDC) bo verjetno v bližnji prihodnosti izpolnjena Teslina vizija interkontinentalnega električnega omrežja. Navkljub velikosti in s tem relativno veliki zanesljivosti sistema pa se zaradi uvedbe novih tehnologij problem zanesljivosti povečuje. To dela mojo temo še posebej aktualno. V grobem deluje električno omrežje 24 ur na dan 365 dni v letu, vendar na lokalni ravni še vedno pride do izklopov. Delimo jih na nenačrtovane izpade, planske izklope zaradi vzdrževalnih del in prisilne izklope v primeru redukcij. V delu se obravnava problem izračuna nedobavljene energije porabniku v primeru izpada, kar je eden ključnih kazalnikov za oceno zanesljivosti EES. Bolj nazorno si lahko to predstavljamo, da iščemo najboljšo aproksimacijo urne porabnikove moči oziroma diagram porabe v času, ko tega ni bilo na omrežju. To je pomembno, ker je ta v določenih primerih upravičen do finančne kompenzacije. Delo opisuje celoten proces razvijanja optimalnega modela za napoved diagrama porabe, od začetne obdelave podatkov, iskanja korelacij meteoroloških vhodnih podatkov z električno porabno močjo in avtokorelacij električne porabne moči, pa do izvedbe mehkih modelov z zakasnjenimi in predčasnimi vhodi za napoved voznega reda ter primerjave tega modela s konvencionalnimi metodami za napoved oziroma z novim odprtokodnim modelom napovedovanja časovnih vrst Fbprophet. Seveda delo vsebuje tudi teoretično ozadje uporabljenih modelov za napovedovanje in del o zanesljivosti omrežja ter napakah na njem. Rezultati modela so dosti boljši od običajno uporabljenih aproksimacijskih metod npr. regresije z večimi spremenljivkami ali drugih modelov za napovedovanje časovnih serij in so aplikativni na drugih področjih. Poleg tega predlagan model ni tako kompleksen, zato so časi računanaja relativno kratki (reda sekund), prav tako pa dobimo dobre rezultate v majhnih setih podatkov. The power system is one of the biggest systems known to man. Despite its' size and inherently great reliability, this is becoming a bigger problem with the implementation of new technologies e.g. wind penetration. This is what makes my thesis very relevant. In general we can say that the Power System works 24 hours a day 365 days in a year, but on the local scale we still have occasional interruptions of supply, broadly we differ in scheduled and unscheduled ones. Power outages effect the biggest percentage of running business, therefore it is vital to assess this loss of power. My thesis tries to find a better approximation of the undelivered energy to the consumers by predicting their equivalent power consumption at the time of the outage or their typical daily load diagram. This could later be used to calculate the amount of financial compensation the consumer is entitled to and is also a key indicator of grid reliability. The thesis contains the whole process when dealing with similar problems, from initial data structuring and filtering, seeking strong correlations and auto-correlations between input and output data to the final implementation of the Adaptive Neuro-Fuzzy Inference System. We also benchmark it against conventional solutions, specifically to a newly developed open-source model called Fbprophet to evaluate. The document also contains some theoretical background in the used models, grid operation, common faults and grid reliability. The performance of the deployed model is far better than the conventional ones e.g. multivariate regression or other time series forecasting models and is applicable in other fields. Also it is not as complex as some models can be therefore rather quick in terms of computational time and we also obtain great results in rather small datasets.
Databáze: OpenAIRE